Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này cũng dễ mà:
Áp dụng BĐT Cô-si, ta có:
\(y+z+1\ge3\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{y+z+1}{3}\ge\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{3x}{y+z+1}\)
\(\Rightarrow\)\(\sum\dfrac{x}{\sqrt[3]{yz}}\ge\sum\dfrac{3x}{y+z+1}\)
Mà \(\sum\dfrac{3x}{y+z+1}=\sum\dfrac{3x^2}{xy+xz+x}\)
Áp dụng BĐT Cauchy -Schwaz:
\(\sum\dfrac{3x^2}{xy+xz+x}\ge\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
Mà:
\(xy+yz+xz\le x^2+y^2+z^2\)(BĐT phụ)
\(\Rightarrow\)\(2\left(xy+yz+xz\right)\le2\left(x^2+y^2+z^2\right)=6\)
Áp dụng BĐT Bunhicopski:
\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)
\(\Rightarrow x+y+z\le3\)
\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le6+3=9\)
\(\Rightarrow\)\(\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{3\left(x+y+z\right)^2}{9}\ge\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+xz\left(ĐPCM\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\)x=y=z=1
Bài 1:
Ta có:
\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)\)
\(=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\geq \frac{3}{4}(x+y)^2\)
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}(x+y)}{2}\)
Hoàn toàn tương tự:
\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}(y+z)}{2}; \sqrt{z^2+xz+x^2}\geq \frac{\sqrt{3}(x+z)}{2}\)
Cộng theo vế các BĐT trên:
\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$
Bài 2:
BĐT cần chứng minh tương đương với:
$4(a^9+b^9)-(a+b)(a^3+b^3)(a^5+b^5)\geq 0$
$\Leftrightarrow 4(a+b)(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a+b)(a^8+a^3b^5+a^5b^3+b^8)\geq 0$
$\Leftrightarrow 4(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a^8+a^3b^5+a^5b^3+b^8)\geq 0$
$\Leftrightarrow 3a^8+3b^8+4a^6b^2+4a^2b^6+4a^4b^4-(4a^7b+4ab^7+5a^5b^3+5a^3b^5)\geq 0$
$\Leftrightarrow (a-b)^2(a^2-ab+b^2)(3a^4+5a^3b+7a^2b^2+5ab^3+3b^4)\geq 0$
BĐT trên luôn đúng vì:
$(a-b)^2\geq 0, \forall a,b$
$a^2-ab+b^2=(a-\frac{b}{2})^2+\frac{3}{4}b^2\geq 0, \forall a,b$
$3a^4+5a^3b+7a^2b^2+5ab^3+3b^4=3(a^4+b^4+2a^2b^2)+a^2b^2+5ab(a^2+b^2)$
$=3(a^2+b^2)^2+5ab(a^2+b^2)+a^2b^2$
$=(a^2+b^2)(3a^2+3b^2+5ab)+a^2b^2=(a^2+b^2)[3(a+\frac{5}{6}b)^2+\frac{11}{12}b^2]+a^2b^2\geq 0$ với mọi $a,b$
Do đó ta có đpcm.
Dấu "=" xảy ra khi $a=b$ hoặc $a+b=0$
Lời giải:
Do $xyz=1$ nên tồn tại $a,b,c>0$ sao cho $(x,y,z)=(\frac{a}{b}, \frac{b}{c}, \frac{c}{a})$
Khi đó bài toán trở thành:
Cho $a,b,c>0$. CMR: \(2\left(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}\right)-\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\geq 3\)
\(\Leftrightarrow \frac{2(a^3+b^3+c^3)-(a^2b+b^2c+c^2a)}{abc}\geq 3\)
\(\Leftrightarrow 2(a^3+b^3+c^3)\geq a^2b+b^2c+c^2a+3abc(*)\)
---------------
Áp dụng BĐT AM-GM:
\(a^3+b^3+c^3\geq 3\sqrt[3]{a^3b^3c^3}=3abc(1)\)
Và:
\(\frac{a^3}{3}+\frac{a^3}{3}+\frac{b^3}{3}\geq 3\sqrt[3]{\frac{a^6b^3}{3^3}}=a^2b\)
\(\frac{b^3}{3}+\frac{b^3}{3}+\frac{c^3}{3}\geq 3\sqrt[3]{\frac{b^6c^3}{3^3}}=b^2c\)
\(\frac{c^3}{3}+\frac{a^3}{3}+\frac{a^3}{3}\geq 3\sqrt[3]{\frac{c^6a^3}{3^3}}=c^2a\)
Cộng theo vế và rút gọn \(\Rightarrow a^3+b^3+c^3\geq a^2b+b^2c+c^2a(2)\)
Lấy $(1)+(2)$ ta thu được $(*)$
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$
Đặt \(\left(x;y;z\right)=\left(\frac{a'}{b'};\frac{b'}{c'};\frac{c'}{a'}\right)\).Cần chứng minh:
\(2\left(\frac{a'^2}{b'c'}+\frac{b'^2}{c'a'}+\frac{c'^2}{a'b'}\right)-\left(\frac{b'}{a'}+\frac{c'}{b'}+\frac{a'}{c'}\right)\)
Đặt \(\left(\frac{a'}{b'};\frac{b'}{c'};\frac{c'}{a'}\right)=\left(a;b;c\right)\). Bây giờ bài toán trở nên dễ dàng hơn:
Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng \(2\left(ab+bc+ca\right)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\). Rất hiển nhiên điều này đúng theo AM-GM: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=3\)
Ta có điều phải chứng minh.
Is that true? Nếu nó đúng, em nghĩ bài này mấu chốt là nhìn ra cách đặt đầu tiên, và một chút may mắn:)
Cộng hai vế phương trình lại ta có :
\(x+y-2z+z\left(x+y\right)=2\)
\(\Leftrightarrow\left(x+y\right)\left(z+1\right)-2\left(z+1\right)=0\Leftrightarrow\left(x+y-2\right)\left(z+1\right)=0\)
\(\Rightarrow x+y=2\) ( vì z dương nên không thể bằng -1 )
Ta có :
\(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}=2\)
Vậy Min T = 2 khi x = y = 1
Từ giả thiết ta có: \(\left(x+y-z\right)^2=4xy\)
\(\Rightarrow P=x+y+z+\frac{2}{\left(x+y-z\right)^2.z}=x+y+z+\frac{8}{4z\left(x+y-z\right)^2}\)
Am-Gm:\(\left(x+y-z\right)\left(x+y-z\right).4z\le\frac{1}{27}\left(2x+2y+2z\right)^3=\frac{8}{27}\left(x+y+z\right)^3\)
\(\Rightarrow P\ge x+y+z+\frac{27}{\left(x+y+z\right)^3}\)
\(=\frac{x+y+z}{3}+\frac{x+y+z}{3}+\frac{x+y+z}{3}+\frac{27}{\left(x+y+z\right)^3}\ge4\sqrt[4]{\frac{\left(x+y+z\right)^3.27}{27.\left(x+y+z\right)^3}}=4\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x+y-z=4z\\x+y+z=3\\\left(x+y-z\right)^2=4xy\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}z=\frac{1}{2}\\x+y=\frac{5}{2}\\xy=1\end{matrix}\right.\)
\(\Rightarrow\left(x;y;z\right)=\left(\frac{1}{2};2;\frac{1}{2}\right)\) hoặc \(\left(2;\frac{1}{2};\frac{1}{2}\right)\). Nhưng vì đề bài cho đối xứng với cả 3 biến nên dấu = xảy ra tại hoán vị của \(\left(2;\frac{1}{2};\frac{1}{2}\right)\)
Vậy P min =4
Ngọc HnueThảo PhươngĐỖ CHÍ DŨNGMinh AnBăng Băng 2k6Vũ Minh Tuấn