K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2020

đặt pt là (*)

Gọi \(f\left(x\right)=x^3-3x+1\Rightarrow f\left(x\right)\)liên tục trên R

\(f\left(-2\right)=-1,f\left(0\right)=1\Rightarrow f\left(-2\right).f\left(0\right)< 0\Rightarrow\exists c_1\in\left(-2;0\right)\)là một nghiệm của (*)

\(f\left(0\right)=1,f\left(1\right)=-1\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow\exists c_2\in\left(0;1\right)\)là 1 nghiệm của (*)

\(f\left(1\right)=-1,f\left(2\right)=3\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow\exists c_3\in\left(1;2\right)\)là 1 nghiệm của (*)

dễ thấy \(c_1,c_2,c_3\)phân biệt nên pt(*) có 3 nghiệm phân biệt

23 tháng 6 2017

NV
20 tháng 4 2019

Câu 1:

\(f\left(x\right)=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}-\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}=m\)

Tọa độ hóa bài toán bằng cách gọi \(A\left(-\frac{1}{2};\frac{\sqrt{3}}{2}\right)\)\(B\left(\frac{1}{2};\frac{\sqrt{3}}{2}\right)\) là hai điểm cố định trên mặt phẳng tọa độ Oxy, M là điểm di động có tọa độ \(M\left(x;0\right)\)

\(\Rightarrow AM=\left|\overrightarrow{AM}\right|=\sqrt{\left(x+\frac{1}{2}\right)^2+\left(0-\frac{\sqrt{3}}{2}\right)^2}=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\)

\(BM=\left|\overrightarrow{BM}\right|=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\)

\(\Rightarrow f\left(x\right)=AM-BM\)

Mặt khác, theo BĐT tam giác ta luôn có

\(\left|AM-BM\right|< AB=\sqrt{\left(\frac{1}{2}+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)^2}=1\)

\(\Rightarrow\left|f\left(x\right)\right|< 1\Rightarrow\left|m\right|< 1\Rightarrow-1< m< 1\)

NV
20 tháng 4 2019

Câu 2:

ĐKXĐ: \(1\le x\le3\)

Đặt \(\sqrt{x-1}+\sqrt{3-x}=a\ge0\)

Áp dụng BĐT Bunhiacốpxki:

\(\Rightarrow a\le\sqrt{\left(1+1\right)\left(x-1+3-x\right)}=2\sqrt{2}\)

Mặt khác

\(a^2=x-1+3-x+2\sqrt{\left(x-1\right)\left(3-x\right)}=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\ge2\)

\(\Rightarrow2\le a\le3\)

Cũng từ trên ta có:

\(a^2=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\Rightarrow\sqrt{\left(x-1\right)\left(3-x\right)}=\frac{a^2-2}{2}=\frac{1}{2}a^2-1\)

Phương trình trở thành:

\(a-\left(\frac{1}{2}a^2-1\right)=m\)

\(\Leftrightarrow-\frac{1}{2}a^2+a+1=m\)

Xét hàm \(f\left(a\right)=-\frac{1}{2}a^2+a+1\) trên \(\left[2;2\sqrt{2}\right]\)

\(f'\left(a\right)=-a+1< 0\) \(\forall a\in\left[2;2\sqrt{2}\right]\)

\(\Rightarrow f\left(a\right)\) nghịch biến trên \(\left[2;2\sqrt{2}\right]\)

\(\Rightarrow f\left(2\sqrt{2}\right)\le f\left(a\right)\le f\left(2\right)\Rightarrow-3+2\sqrt{2}\le f\left(a\right)\le1\)

Vậy:

- Nếu \(\left[{}\begin{matrix}m>1\\m< -3+2\sqrt{2}\end{matrix}\right.\) thì phương trình vô nghiệm

- Nếu \(-3+2\sqrt{2}\le m\le1\) pt có nghiệm

15 tháng 3 2019

 Đáp án D.

Tập xác định: D = R

y' = 3x2 – 3 => y’ = 0

y(0) = 1, y(1) = -1

Hàm số max[0;1]= y(0) = 1

27 tháng 12 2021

𝑥=1

27 tháng 12 2021

\(PT\Leftrightarrow3^x+2^x-3x-2=0\left(1\right)\)

Ta thấy \(x=0;x=1\) là nghiệm của \(\left(1\right)\)

Xét hàm \(f\left(x\right)=3^x+2^x-3x-2,x\in R\\ f'\left(x\right)=3^x\ln3+2^x\ln2-3\\ f''\left(x\right)=3^x\ln^23+2^x\ln^22>0,\forall x\)

Bề lõm của \(f\left(x\right)\) luôn hướng về \(y>0\) nên đồ thị ko thể cắt trục hoành tại nhiều hơn 2 điểm

Vậy nghiệm PT là \(x=0;x=1\)

NV
11 tháng 5 2021

Có thể nghịch suy để chọn hàm làm trắc nghiệm

Do \(x_2=\dfrac{x_3-x_1}{2}=1\) nên hàm có dạng: \(y=a\left(x-1\right)^4-b\left(x-1\right)^2+c\) với a;b;c dương

\(y'=0\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=\dfrac{b}{2a}\end{matrix}\right.\) \(\Rightarrow x_1;x_3\) thỏa mãn \(\left(x-1\right)^2=\dfrac{b}{2a}\) và \(f\left(x_2\right)=c\)

\(f\left(x_1\right)+f\left(x_3\right)+\dfrac{2}{3}f\left(x_2\right)=0\Leftrightarrow2f\left(x_1\right)+\dfrac{2}{3}f\left(x_2\right)=0\)

\(\Leftrightarrow a.\left(\dfrac{b}{2a}\right)^2-b\left(\dfrac{b}{2a}\right)+c+\dfrac{c}{3}=0\Rightarrow-\dfrac{b^2}{4a}+\dfrac{4c}{3}=0\)

Tới đây chọn \(a=3;c=1;b=4\) được hàm \(f\left(x\right)=3\left(x-1\right)^4-4\left(x-1\right)^2+1\)

Dễ dàng tính ra \(x_3=1+\sqrt{\dfrac{2}{3}}\) ; \(x_0=1+\sqrt{\dfrac{1}{3}}\) (với \(x_0\) là giao bên phải của đồ thị và trục hoành); \(f\left(x_1\right)=f\left(x_3\right)=-\dfrac{1}{3}\)

\(S_1+S_2=\int\limits^{x_0}_1f\left(x\right)dx-\int\limits^{x_3}_{x_0}f\left(x\right)dx\approx0,41\)

\(\dfrac{S_1+S_2}{S_3+S_4}=\dfrac{0,41}{\left(1+\dfrac{1}{3}\right)\left(x_3-1\right)-0,41}\approx0,6\)

NV
11 tháng 8 2021

\(\Leftrightarrow2^{-3}.2^{2x}-3.2^{-2}.2^x+1=0\)

\(\Leftrightarrow\dfrac{1}{8}2^{2x}-\dfrac{3}{4}2^x+1=0\)

Đặt \(2^x=t>0\)

\(\Rightarrow\dfrac{1}{8}t^2-\dfrac{3}{4}t+1=0\Rightarrow\left[{}\begin{matrix}t=4\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2^x=4\\2^x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)