K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

\(ĐK:-\dfrac{1}{3}\le x\le2\\ PT\Leftrightarrow\left(\sqrt{3x+1}-2\right)-x+1-\sqrt{2-x}\left(\sqrt{2-x}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-1\right)}{\sqrt{3x+1}+2}-\left(x-1\right)-\dfrac{\sqrt{2-x}\left(1-x\right)}{\sqrt{2-x}+1}=0\\ \Leftrightarrow\left(x-1\right)\left(\dfrac{3}{\sqrt{3x+1}+2}+\dfrac{\sqrt{2-x}}{\sqrt{2-x}+1}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\\dfrac{3}{\sqrt{3x+1}+2}+\dfrac{\sqrt{2-x}}{\sqrt{2-x}+1}-1=0\end{matrix}\right.\)

Với \(x\ge-\dfrac{1}{3}\) thì \(\dfrac{3}{\sqrt{3x+1}+2}+\dfrac{\sqrt{2-x}}{\sqrt{2-x}+1}-1>0\)

Vậy pt có nghiệm duy nhất \(x=1\)

 

NV
23 tháng 10 2021

ĐKXĐ: \(-\dfrac{1}{3}\le x\le2\)

\(\sqrt{3x+1}=3-\sqrt{2-x}\) (do \(-\dfrac{1}{3}\le x\le2\Rightarrow3-\sqrt{2-x}\ge3-\sqrt{2+\dfrac{1}{3}}>0\))

\(\Leftrightarrow3x+1=9+2-x-6\sqrt{3-x}\)

\(\Leftrightarrow3\sqrt{2-x}=5-2x\)

\(\Leftrightarrow9\left(2-x\right)=\left(5-2x\right)^2\)

\(\Leftrightarrow4x^2-11x+7=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{4}\end{matrix}\right.\) (thỏa mãn)

3 tháng 6 2019

\(3x^3+11x^2-3x+7-24x\sqrt{8x-1}+3\sqrt{8x-1}=0\)

Nhận thấy x = 0 không là nghiệm của pt

\(\Leftrightarrow3x^2+11x-3+\frac{7}{x}-24\sqrt{8x-1}+\frac{3}{x}\sqrt{8x-1}=0\)

Đặt \(\frac{1}{x}=t\)

\(\Leftrightarrow3x^2+11x-\left(3-7t+3t\left(\frac{8}{t}-1\right)\sqrt{\frac{8}{t}-1}\right)=0\)

Coi t là tham số mà tính nghiệm

6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

25 tháng 11 2023

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)

NV
16 tháng 3 2019

a/ \(\Delta=\left(3\sqrt{3}\right)^2-4.4\left(-6\right)=123\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3\sqrt{3}+\sqrt{123}}{8}\\x_2=\frac{3\sqrt{3}-\sqrt{123}}{8}\end{matrix}\right.\)

b/ \(\Delta=9-4\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)=25\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3+\sqrt{25}}{2\left(1-\sqrt{5}\right)}=-1-\sqrt{5}\\x_2=\frac{3-\sqrt{25}}{2\left(1-\sqrt{5}\right)}=\frac{1+\sqrt{5}}{4}\end{matrix}\right.\)

16 tháng 3 2019

\(a)4x^2-3\sqrt{3}x-6=0\)

Có: \(a=4;b=-3\sqrt{3};c=-6\)

\(\Delta=b^2-4ac\\ =\left(-3\sqrt{3}\right)^2-4.4.\left(-6\right)\\ =123>0\)

Phương trình có 2 nghiệm phân biệt:

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\sqrt{3}\right)+\sqrt{123}}{2.4}=\frac{3\sqrt{3}+\sqrt{123}}{8}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\sqrt{3}\right)-\sqrt{123}}{2.4}=\frac{3-\sqrt{123}}{8}\)

\(b)\left(1-\sqrt{5}\right)x^2-3x+\sqrt{5}+1=0\)

Có: \(a=1-\sqrt{5};b=-3;c=\sqrt{5}+1\)

\(\Delta=b^2-4ac\\ =\left(-3\right)^2-4.\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\\ =25>0\)

Phương trình có 2 nghiệm phân biệt:

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)+\sqrt{25}}{2\left(1-\sqrt{5}\right)}=-1-\sqrt{5}\\ x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)-\sqrt{25}}{2\left(1-\sqrt{5}\right)}=\frac{1+\sqrt{5}}{4}\)

28 tháng 8 2016

a-b=5 và (a,b)/[a,b]. Tim a:b