Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-5x+36=8\sqrt{3x+4}\)
\(\Leftrightarrow x^2-5x+36-8\sqrt{3x+4}=0\)
\(\Leftrightarrow\left(-8\sqrt{3x+4}+32\right)+\left(x^2-5x+4\right)=0\)
\(\Leftrightarrow-8\left(\sqrt{3x+4}-4\right)+\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow-8.\frac{3x+4-16}{\sqrt{3x+4}+4}+\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow-8.\frac{3x-12}{\sqrt{3x+4}+4}+\left(x-1\right)\left(x-4\right)=0\)
\(\left(x-4\right)\left(\frac{-24}{\sqrt{3x+4}+4}+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\\frac{-24}{\sqrt{3x+4}+4}+x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\-\frac{24}{\sqrt{3x+4}+4}+3+x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\-3.\frac{16-3x-4}{\left(\sqrt{3x+4}+4\right)^2}+\left(x-4\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\\left(x-4\right)\left[\frac{9}{\left(\sqrt{3x+4}+4\right)^2}+1\right]=0\end{cases}}\)
Mà \(\frac{9}{\left(\sqrt{3x+4}+4\right)^2}+1>0\forall x\) nên \(x-4=0\Rightarrow x=4\)
Vật PT có nghiệm duy nhất là \(x=4\)
\(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^2-2x+1\right)+25}\ge\sqrt{9}+\sqrt{25}=8\)
Do dấu "=" ko đồng thời xảy ra ở hai bđt nên pt vô nghiệm
\(\sqrt{3\left(x+1\right)^2+9}-3+\sqrt{5\left(x^2-1\right)^2+25}-5=0\)
\(\Leftrightarrow\frac{3\left(x+1\right)^2}{\sqrt{3\left(x+2\right)^2+9}+3}+\frac{5\left(x+1\right)^2\left(x-1\right)^2}{\sqrt{5\left(x^2-1\right)^2+25}+5}=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(\frac{3}{\sqrt{3\left(x+2\right)^2+9}+3}+\frac{5\left(x-1\right)^2}{\sqrt{5\left(x^2-1\right)^2+25}+5}\right)=0\)
\(\left(\frac{3}{\sqrt{3\left(x+2\right)^2+9}+3}+\frac{5\left(x-1\right)^2}{\sqrt{5\left(x^2-1\right)^2+25}+5}\right)>0\left(\forall x\right)\)
\(\Rightarrow x=-1\)
Bạn kia làm sai rùi ạ chắc nhìn nhầm đề
A) Điều kiện xác định \(x\ge0.\)
Phương trình tương đương với \(\sqrt{x}\left(x-2-\sqrt{x}\right)=0\Leftrightarrow\sqrt{x}=0\) hoặc \(x-\sqrt{x}-2=0\Leftrightarrow x=0\) hoặc \(\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\Leftrightarrow x=0\) hoặc \(\sqrt{x}-2=0\Leftrightarrow x=0,4.\)
B) Điều kiện xác định \(x\ge-\frac{4}{3}.\)
Phương trình tương đương với
\(x^2-8x+16+3x+20=8\sqrt{3x+4}\Leftrightarrow\left(x-4\right)^2+\left(3x+4\right)-8\sqrt{3x+4}+16=0\)
\(\left(x-4\right)^2+\left(\sqrt{3x+4}-4\right)^2=0.\)
Vì \(\left(x-4\right)^2\ge0,\left(\sqrt{3x+4}-4\right)^2\ge0\) nên ta suy ra \(x-4=0\) và \(\sqrt{3x+4}=4.\) Do đó \(x=4.\)
Vậy phương trình có nghiệm duy nhất \(x=4.\)
\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)
ĐKXĐ: ....
\(\Leftrightarrow x^2-8x+16+3x+4-8\sqrt{3x+4}+16=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{3x+4}-4\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\\sqrt{3x+4}-4=0\end{matrix}\right.\) \(\Rightarrow x=4\)
a) \(x^4-13x^2+36=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\\x=-3\end{matrix}\right.\)
b) \(5x^4+3x^2-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(5x^2+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)( do \(5x^2+8\ge8>0\))
c: Ta có: \(2x^4+3x^2+2=0\)
Đặt \(a=x^2\)
Phương trình tương đương là: \(2a^2+3a+2=0\)
\(\text{Δ}=3^2-4\cdot2\cdot2=9-16=-7\)
Vì Δ<0 nên phương trình vô nghiệm
Vậy: Phương trình \(2x^4+3x^2+2=0\) vô nghiệm
dk \(x\ge-\frac{4}{3}\)
\(x^2-5x+4=8\sqrt{3x+4}-32\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=8\left(\sqrt{3x+4}-4\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)-8\frac{\left(\sqrt{3x+4}-4\right)\left(\sqrt{3x+4}+4\right)}{\sqrt{3x+4}+4}=0\)
\(\left(x-1\right)\left(x-4\right)-8.\frac{3\left(x-4\right)}{\sqrt{3x+4}+4}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1-\frac{24}{\sqrt{3x+4}+4}=0\right)\)
đến đây để rồi tự làm nhé ^^
bài toán của mk k có -23 ở vế sau ạ