K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

pt đã cho có dạng \(\frac{1}{\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+10\right)}=\frac{4}{13}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+7}+\frac{1}{x+7}-\frac{1}{x+10}=\frac{4}{13}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+10}=\frac{4}{13}\Leftrightarrow....\)

17 tháng 8 2016

bạn tuấn mình thấy vậy nè

Gỉa sử cho x=1 ta thấy \(\frac{1}{1\times4}\ne\frac{1}{1}-\frac{1}{4}\)

Bạn bấm máy tính thử xem dấu bằng chỉ áp dụng với 2 số tự nhiên liên tiếp thôi còn cái này cách 3 lận

giải thích giúp mình với

1 tháng 8 2017
  

a)    (2x + 1)(3x - 2) = (5x - 8)(2x + 1)

 <=> 6x2 - x - 2 = 10x2 - 11x - 8

<=>  6x2 - 10x2 - x + 11x -2 + 8 = 0

<=>  -4x2 + 10x + 6  = 0

<=> -2 (2x2 - 5x - 3) = 0

<=> 2x2 - 5x - 3 = 0 

<=> 2x2 - 6x + x - 3 = 0

<=> x (2x + 1) - 3 (2x + 1) = 0

<=> (x - 3) (2x + 1) = 0

* x - 3 = 0  => x = 3

* 2x + 1 = 0 => x = -1/2 

S = {-1/2; 3}

b) 4x2 – 1 = (2x +1)(3x -5)

<=> 4x2 – 1 - (2x +1)(3x -5) = 0

<=> (2x - 1) (2x + 1) - (2x + 1)(3x - 5) = 0

<=>  (2x + 1) (2x - 1 - 3x + 5) = 0

<=>  (2x + 1) (-x + 4) = 0

* 2x + 1 = 0  <=> x = -1/2

* -x + 4 = 0 <=> x = 4

S = {-1/2; 4}

c) (x + 1)2 = 4(x2 – 2x + 1)

<=> (x + 1)2 - 4(x2 – 2x + 1) = 0

<=> (x + 1)2 - 4(x2 – 1)2 = 0

* (x + 1)2 = 0   <=> x = -1

* 4(x2 - 1)2 = 0  <=> x = 1 và x = -1

S = {-1;  1}

d) 2x3 + 5x2 – 3x = 0

<=> x (2x2 + 5x - 3) = 0

<=> x (2x2 + 6x - x - 3) = 0

<=> x [x(2x - 1) + 3 (2x - 1)] = 0

<=> x (2x - 1) (x + 3) = 0

* x = 0

* 2x - 1 = 0  <=> x = 1/2

* x + 3 = 0  <=> x = -3

S = { -3; 0; 1/2}

  
1 tháng 8 2017

\(\frac{1}{x^2+5x+4}+\frac{1}{x^2+11x+28}+\frac{1}{x^2+17x+70}=\frac{3}{4x-2}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+10\right)}=\frac{3}{4x-2}\)

\(\Leftrightarrow3x^2+21x+36=0\)

\(\Leftrightarrow x=-3\)

1 tháng 2 2020

\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\Leftrightarrow2x+1=2x^3+x^2+2x+1\)\(\Leftrightarrow2x^3+x^2=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)

2 tháng 2 2020

\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\left(1\right)\)

\(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

\(x^2+1\ge1\forall x\Rightarrow2x+1\ge0!2x+1!=2x+1\)

\(\left(1\right)\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

\(\left(1\right)\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

\(\left(1\right)\Leftrightarrow2x+1=\left(2x+1\right)\left(x^2+1\right)\Leftrightarrow\left(2x+1\right).\left(1-\left(x^2+1\right)\right)=0\)

\(\hept{\begin{cases}2x+1=0\\-x^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}}\)

Chúc bạn học tốt !!!

13 tháng 11 2019

@Nguyễn Việt Lâm em sắp ktra, anh giúp em bài này với ạ ....

13 tháng 11 2019

Akai Haruma giúp em giải phương trình trên được ko ạ ^_^

thèm ăn cục đường phèn quá.

18 tháng 8 2018

a)dk :\(x\ne1;x\ne-4\)

quy đồng suy ra:

\(\frac{15x}{x^2+3x-4}=\frac{12\left(x-1\right)+4\left(x+4\right)+x^2+3x-4}{x^2+3x-4}=\frac{x^2+19x}{x^2+3x-4}\)

bỏ mẫu suy ra :15x=x2+19x

<=>x2+4x=0

<=>x(x+4)=0

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(loại\right)\end{cases}}\) do điều kiện xác định.

vậy nghiệm của phương trình là x=0 0 0 0 một lik cho bạn

9 tháng 9 2016

a)x=-0.25

b)x=2

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(4x^2+1\geq 4x\)

\(\Rightarrow \left\{\begin{matrix} 5x^2-x+3\geq x^2+3x+2\\ 5x^2+x+\geq x^2+5x+6\\ 5x^2+3x+13\geq x^2+7x+12\\ 5x^2+5x+21\geq x^2+9x+20\end{matrix}\right.\)

\(\text{VT}\leq \frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\)

\(\Leftrightarrow \text{VT}\leq \frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}+\frac{1}{(x+3)(x+4)}+\frac{1}{(x+4)(x+5)}\)

\(\Leftrightarrow \text{VT}\leq \frac{(x+2)-(x+1)}{(x+1)(x+2)}+\frac{(x+3)-(x+2)}{(x+2)(x+3)}+\frac{(x+4)-(x+3)}{(x+3)(x+4)}+\frac{(x+5)-(x+4)}{(x+4)(x+5)}\)

\(\Leftrightarrow \text{VT}\leq \frac{1}{x+1}-\frac{1}{x+5}\)

\(\Leftrightarrow \text{VT}\leq \frac{4}{x^2+6x+5}\)

Dấu "=" xảy ra khi $4x^2=1, x>0$ hay $x=\frac{1}{2}$

Vậy $x=\frac{1}{2}$ là nghiệm của PT.

30 tháng 11 2019

Nguyễn Việt Lâm anh giúp em pt trên với ạ !!!

24 tháng 6 2019

a,ĐKXĐ \(x\ne-1;-\frac{1}{2}\)

Ta thấy x=0 không là nghiệm của PT

Xét \(x\ne0\)

Khi đó PT 

<=> \(\frac{2}{6x-1+\frac{3}{x}}+\frac{5}{4x+5+\frac{2}{x}}+\frac{1}{2x+3+\frac{1}{x}}=\frac{1}{3}\)

Đặt \(2x+\frac{1}{x}=a\)

=> \(\frac{2}{3a-1}+\frac{5}{2a+5}+\frac{1}{a+3}=\frac{1}{3}\)

<=>  \(3\left(25a^2+75a+10\right)=6a^3+31a^2+34a-15\)

<=> \(6a^3-44a^2-191a-45=0\)

Xin lỗi đến đây tớ ra nghiệm không đẹp 

24 tháng 6 2019

c, \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\)   ĐKXĐ \(x\ne-3\)

<=> \(\left(x-\frac{3x}{x+3}\right)^2+2.\frac{3x^2}{x+3}=7\)

<=> \(\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}-7=0\)

<=> \(\left(\frac{x^2}{x+3}+7\right)\left(\frac{x^2}{x+3}-1\right)=0\)

<=> \(\orbr{\begin{cases}x^2+7x+21=0\\x^2-x-3=0\end{cases}}\)

\(S=\left\{\frac{1\pm\sqrt{13}}{2}\right\}\)thỏa mãn ĐKXĐ

NV
14 tháng 5 2020

ĐKXĐ: ...

\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=2-\frac{1}{z}\\\frac{2}{xy}=4+\frac{1}{z^2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}=4+\frac{1}{z^2}-\frac{4}{z}\\\frac{2}{xy}=4+\frac{1}{z^2}\end{matrix}\right.\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=-\frac{4}{z}\) (1)

Từ pt đầu suy ra:

\(\frac{1}{x}+\frac{1}{y}-2=-\frac{1}{z}\Rightarrow\frac{4}{x}+\frac{4}{y}-8=-\frac{4}{z}\) (2)

Thế (2) vào (1)

\(\frac{1}{x^2}+\frac{1}{y^2}=\frac{4}{x}+\frac{4}{y}-8\)

\(\Leftrightarrow\frac{1}{x^2}-\frac{4}{x}+4+\frac{1}{y^2}-\frac{4}{y}+4=0\)

\(\Leftrightarrow\left(\frac{1}{x}-2\right)^2+\left(\frac{1}{y}-2\right)^2=0\)

Bạn tự giải nốt