Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(x+1\right)^4\ge0\forall x\); \(\left(x-3\right)^4\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^4+\left(x-3\right)^4\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}\left(ktm\right)}\)
=> Pt vô nghiệm
a) ( x + 1 ) 4 + ( x - 3 ) 4 = 0
Vì \(\left(x+1\right)^4\ge0\forall x\inℤ\)
\(\left(x-3\right)^4\ge0\forall x\inℤ\)
Nên \(\left(x+1\right)^4+\left(x-3\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\x=3\end{cases}}}\)
Vậy .....
-x3 + x2 + 4 = 0
<=> -(x - 2)(x2 + x + 2) = 0
<=> x - 2 = 0
x = 0 + 2
x = 2
Mà vì x2 + x + 2 # 0
=> x = 2
Ta có : \(\left(x+1\right)^4\ge0\forall x\)
\(\left(x+3\right)^4\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^4+\left(x+3\right)^4\ge0\forall x\)
Dấu = xảy ra khi : \(\left(x+1\right)^4+\left(x+3\right)^4=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x+3\right)^4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\x=-3\end{cases}\left(ktm\right)}\)
\(\Rightarrow\)phương trình vô ngiệm
Ta có :
\(\left(x+1\right)^4\ge0\forall x\)
\(\left(x+3\right)^4\ge0\forall x\)
Phương trình = 0 \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x+3\right)^4=0\end{cases}}\)
\(\hept{\begin{cases}x+1=0\\x+3=0\end{cases}}\)
\(\hept{\begin{cases}x=-1\\x=-3\end{cases}}\)
\(x\in\varnothing\)
\(bpt\Leftrightarrow\left[\left(x+1\right)^2+3\right]\left(x-1\right)< 0\)
\(\left(x+1\right)^2+3>0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
\(2x^4-7x^3+9x^2-7x+2=0\)
\(\Leftrightarrow2x^4-x^3-6x^3+3x^2+6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x^4-x^3\right)-\left(6x^3-3x^2\right)+\left(6x^2-3x\right)-\left(4x-2\right)=0\)
\(\Leftrightarrow x^3\left(2x-1\right)-3x^2\left(2x-1\right)+3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)(1)
Ta dễ thấy \(x^3-3x^2+3x-2>0\forall x\) nên để PT (1) có nghiệm \(\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy nghiệp phương trình trên là \(S=\left\{\frac{1}{2}\right\}\)
Sủa chút : \(\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(x^3-2x^2\right)+\left(-x^2+2x\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)
\(\Leftrightarrow x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^4-4x^3+4x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x^2-4x+1\right)=0\)
- Khi x - 1 = 0 thì x = 1
- Khi x + 1 = 0 thì x = -1
- Khi \(x^2-4x+1=0\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{cases}}\)
Pt có tậo nghiệm là: \(S=\left\{1;-1;\sqrt{3}+2;-\sqrt{3}+2\right\}\)
\(\Leftrightarrow\left(x^2-x-3\right)\left(x^2+x-1\right)=0\)
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)
x^3 + x^2 + 4 = -2^3 + 2^2 + 4
= 0
\(x^3+x^2+4=0\Leftrightarrow x^3+2x^2-x^2-2x+2x+4=0\Leftrightarrow x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-x+2\right)=0\)
vì x^2 -x +2 >0 nên \(x+2=0\Rightarrow x=-2\)
Vậy nghiệm phương trình là x=-2