Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bổ sung đề là tìm x,y nguyên dương
b/\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\).Vai trò của x,y là bình đẳng nên có thể giả sử: \(x\ge y\)
Hiển nhiên ta có: \(\frac{1}{y}< \frac{1}{3}\Leftrightarrow y\ge4\) (vì x,y nguyên dương)
và\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}=\frac{2}{6}\le\frac{2}{y}\Rightarrow y\le6\)
Ta có: \(4\le y\le6\)
Đến đây bí,alibaba!
\(a)2xy+4y-x=5\)
\(\Leftrightarrow\left(2xy+4y\right)-x=3+2\)
\(\Leftrightarrow2y\left(x+2\right)-x-2=3\)
\(\Leftrightarrow2y\left(x+2\right)-\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(2y-1\right)=3\)
\(\Rightarrow\left(x+2\right);\left(2y-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét từng trường hợp :
- \(\hept{\begin{cases}x+2=1\\2y-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
- \(\hept{\begin{cases}x+2=3\\2y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
- \(\hept{\begin{cases}x+2=-1\\2y-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)
- \(\hept{\begin{cases}x+2=-3\\2y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=0\end{cases}}}\)
Vậy
\(2x+y=xy-3\)
\(\Leftrightarrow xy-2x-y=3\)
\(\Leftrightarrow\left(xy-2x\right)-y=-2+5\)
\(\Leftrightarrow x\left(y-2\right)-y+2=5\)
\(\Leftrightarrow x\left(y-2\right)-\left(y-2\right)=5\)
\(\Leftrightarrow\left(y-2\right)\left(x-1\right)=5\)
\(\Rightarrow\left(y-2\right);\left(x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét các trường hợp như câu trên và kết luận
a) Cho D(x) =0
=> (x -1)^2 +( x+5)^2 =0
=> (x-1) ^2 = -( x+5)^2
=> x-1 = -x-5
=> x+x = -5+1
2x = -4
=> x = -2
KL : x=-2 là nghiệm của D(x)
b) Cho N(x) =0
=> x^2 -6x +8 =0
=> x.(x-6) =-8
=> x = 2
KL: x=2 là nghiệm của N(x)
c) Cho H(x) =0
=> 8x^2 -6x -2 =0
2.( 4x^2 -3x -1) =0
=> 4x^2 -3x -1 =0
x.(4x-3) =1
=> x=1
KL: x=1 là nghiệm của H(x)
d) Cho F(x) =0
=> 2x^3 +x^2 -8x -4 =0
x( 2x^2 +x -8) = 4
=> x= 2
KL: x=2 là nghiệm của F(x)
Chúc bn học tốt !!!
a) x = 1 hoặc x = -5
b) x = 2 hoặc x = 4
c) x = 1 hoặc x = -1/4
d) x = -2 hoặc x = -1/2 hoặc x = 2
TL:
Tham khảo ạ:
y3=x3+8x2−6x+8y3=x3+8x2−6x+8
⟹y3−x3=8x2−6x+8⟹y3−x3=8x2−6x+8
⟹(y−x)(y2+x2+xy)=8x2−6x+8⟹(y−x)(y2+x2+xy)=8x2−6x+8
Bây giờ nếu chúng ta có thể xác định 8x2−6x+8 thì chúng ta có thể so sánh LHS với RHS.Am I có đi đúng hướng không?
HT
TL:
Anh vào nick của em thống kê hỏi đáp vì nó không hiện lên ạ
@@@@@@@@@@@@@@@@@@@@@@
Nếu đúng thì anh k nhé
HT