Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng của hai số là 78, hiệu của hai số là 6. Tìm hai số đó ?
Đặt \(\sqrt{x}=y\) \(\Rightarrow x=y^2\)
\(PTTT:2y^2+3y-2=0\)
\(\Leftrightarrow2y^2+4y-y-2=0\)
\(\Leftrightarrow2y\left(y+2\right)-\left(y+2\right)=0\)
\(\Leftrightarrow\left(y+2\right)\left(2y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=-2\\y=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-2\left(lọai\right)\\\sqrt{x}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow x=\sqrt{\frac{1}{2}}\)
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
cái pt thứ 2 bạn nhân 2 vế vs x
Sau đó chuyển hết sang 1 vế,,,dùng máy băm nghiệm
\(\sqrt{4x-8}-\sqrt{x-2}=2.\)
ĐK \(x\ge2\)
PT<=> \(2\sqrt{x-2}-\sqrt{x-2}=2\)
<=> \(\sqrt{x-2}=2\)
<=> x-2=4
<=> x=6 (t/m)
Vậ pt có nghiệm x=6
a) câu a bạn cho 2 cái căn ở cuối làm j thế
hiệu bằng 0 rồi mà?
a) \(\frac{\sqrt{2x-3}}{x-1}=2\)
\(\Leftrightarrow\left(\frac{\sqrt{2x-3}}{x-1}\right)^2=4\)
\(\Leftrightarrow2x-3=4\left(x-1\right)^2\)
\(\Leftrightarrow2x-3=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow2x-3-4x^2+8x-4=0\)
\(\Leftrightarrow-4x^2+10x-7=0\)
\(\Leftrightarrow-\left[\left(2x^2\right)-2.2x.\frac{10}{4}+\left(\frac{10}{4}\right)^2-18\right]=0\)
\(\Leftrightarrow-\left(2x-\frac{10}{4}\right)^2+18=0\)
\(\Leftrightarrow\left(\sqrt{18}\right)^2-\left(2x-\frac{10}{4}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{18}-2x-\frac{10}{4}\right)\left(\sqrt{18}+2x-\frac{10}{4}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{18}-2x-\frac{10}{4}=0\\\sqrt{18}+2x-\frac{10}{4}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}-2x=\frac{10}{4}-\sqrt{18}\\2x=\frac{10}{4}-\sqrt{18}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+6\sqrt{2}}{4}\\x=\frac{5+6\sqrt{2}}{4}\end{cases}}}\)
Bài này giải theo cách lớp 9 thì thực sự bó tay.
Đặt x = y - 2/3
\(x^3+2x^2-23x+8=0\)
\(\left(y-\frac{2}{3}\right)^3+2\left(y-\frac{2}{3}\right)^2-23\left(y-\frac{2}{3}\right)+8=0\)
\(\Leftrightarrow y^3-2y^2+\frac{4}{3}y-\frac{8}{27}+2y^2-\frac{8}{3}y+\frac{8}{9}-23y+\frac{46}{3}+8=0\)
\(\Leftrightarrow y^3-\frac{73}{3}y+\frac{646}{27}=0\) (1)
Đặt \(a=\sqrt{-\frac{4}{3}.\frac{-73}{3}}=\frac{2\sqrt{73}}{3}\)
Đặt \(y=a.\cos t\)
với \(0\le t\le\pi\)
Thay vào (1), ta có:
\(a^3\cos^3t-\frac{73}{3}a\cos t=-\frac{646}{27}\)
\(\Leftrightarrow\frac{292}{9}.\frac{2\sqrt{73}}{3}\cos^3t-\frac{73}{3}.\frac{2\sqrt{73}}{3}\cos t=-\frac{646}{27}\)
\(\Leftrightarrow-\frac{73}{3}.\frac{2\sqrt{73}}{3}\left(-\frac{4}{3}\cos^3t+\cos t\right)=-\frac{646}{27}\)
\(\Leftrightarrow146\sqrt{73}\left(4\cos^3t-3\cos t\right)=646\)
\(\Leftrightarrow146\sqrt{73}.\cos\left(3t\right)=646\)
\(\cos\left(3t\right)=\frac{323\sqrt{73}}{5329}\)
\(t=\frac{\pm arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2k\pi}{3}\left(k\in Z\right)\)
Vì \(0\le t\le\pi\)
\(\Rightarrow t=\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}\) hoặc \(t=\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\)hoặc \(t=\frac{-arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\)
\(x=y+\frac{2}{3}=-\frac{73}{3}\cos t+\frac{2}{3}\)
Vậy nghiệm của pt là
\(\left\{-\frac{73}{3}\cos\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2}{3};-\frac{73}{3}\cos\left(\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\right)+\frac{2}{3};-\frac{73}{3}\cos\left(\frac{-arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\right)+\frac{2}{3}\right\}\)
Các góc đều ở chế độ radian (Hàm arccos trong casio là cos-1)
***P/S: giải theo lớp 9 thì chịu
Nhầm: Đổi \(-\frac{73}{3}\) thành \(\frac{2\sqrt{73}}{3}\)mới đúng