Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
\(\Leftrightarrow\sqrt{\frac{42}{5-x}}-\sqrt{\frac{126}{14}}+\sqrt{\frac{60}{7-x}}-\sqrt{\frac{45}{5}}=0\)
\(\Leftrightarrow\frac{\frac{42}{5-x}-\frac{126}{14}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{60}{7-x}-\frac{45}{5}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)
\(\Leftrightarrow\frac{\frac{-3\left(3x-1\right)}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{-3\left(3x-1\right)}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)
\(\Leftrightarrow-3\left(3x-1\right)\left(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{x-5}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}\right)=0\)
Dễ thấy : \(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}>0\)
\(\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)
Chúc bạn học tốt !!!
Thế muốn giải thích thì liệt kê đau đầu =(
\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)
\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)
Đây là TH là số hữu tỉ còn lại.....
\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)
\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)
mình nghĩ sửa đề bài là \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\)
(đkxđ: x>0)
Theo BĐT Cauchy ta có
\(\sqrt{\frac{x^2+x+1}{x}}+\sqrt{\frac{x}{x^2+x+1}}\ge2\sqrt[4]{1}=2\)
Mà VP=7/4 <2=> MT
Vậy PT vô nghiệm
\(\frac{5}{\sqrt{x^2}+1}\)hay\(\frac{5}{\sqrt{x^2+1}}\)v
b)
Đặt \(\sqrt{x-2}=a\); \(\sqrt{4-x}=b\)
Ta có hpt:
\(\hept{\begin{cases}a+b=-a^2b^2+3\\a^2+b^2=2\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=-a^2b^2+3\\\left(a+b\right)^2-2ab-2=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2\\\left(-a^2b^2+3\right)^2-2ab-2=0\end{cases}}\)
Đặt ab=t rồi giải hệ nhé bạn
Phần b cách ngắn hơn nè:
\(\sqrt{x-2}-1+\sqrt{4-x}-1=x^2-6x+9\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2}\right)^2-1}{\sqrt{x-2}+1}+\frac{\left(\sqrt{4-x}\right)^2-1}{\sqrt{4-x}+1}=\left(x-3\right)^2\)
\(\Leftrightarrow\frac{x-3}{\sqrt{x-2}+1}+\frac{3-x}{\sqrt{4-x}+1}=\left(x-3\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x-2}+1}-\frac{1}{\sqrt{4-x}+1}-x+3\right)=0\)
\(\Rightarrow x=3\)
\(C=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[6]{\left(7-4\sqrt{3}\right).\left(7+4\sqrt{3}\right)}-x}{\sqrt[4]{\left(9+4\sqrt{5}\right).\left(9-4\sqrt{5}\right)}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1+\sqrt{x}\right).\left(1-\sqrt{x}\right)}{1+\sqrt{x}}\)
\(=\sqrt{x}+1-\sqrt{x}=1\)