Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sin3x + sin5x = 0
⇔ 2sin4x. cosx = 0
Vậy nghiệm của phương trình là:
\(\Leftrightarrow sin4x\left(sin5x+sin3x\right)-sin2x.sinx=0\)
\(\Leftrightarrow2sin^24x.cosx-2sin^2x.cosx=0\)
\(\Leftrightarrow cosx\left(2sin^24x-2sin^2x\right)=0\)
\(\Leftrightarrow cosx\left(1-cos8x-1+cos2x\right)=0\)
\(\Leftrightarrow cosx\left(cos2x-cos8x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos8x=cos2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=2x+k2\pi\\8x=-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{k\pi}{3}\\x=\frac{k\pi}{5}\end{matrix}\right.\)
\(\sin\left(5x\right)+\sin\left(3x\right)+2\cos\left(x\right)=1+\sin\left(4x\right)\)
\(\Leftrightarrow2\sin\left(4x\right)\cos\left(x\right)-\sin\left(4x\right)+2\cos\left(x\right)-1=0\)
\(\Leftrightarrow\sin\left(4x\right)(2\cos\left(x\right)-1)+(2\cos\left(x\right)-1)=0\)
\(\Leftrightarrow(2\cos\left(x\right)-1)(\sin\left(4x\right)+1)=0\)
\(\Rightarrow\left[{}\begin{matrix}\cos\left(x\right)=\dfrac{1}{2}\\\sin\left(4x\right)=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\4x=\dfrac{-\pi}{2}+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{-\pi}{8}+k\dfrac{\pi}{2}\end{matrix}\right.\)
\(4\sin3x+\sin5x-2\sin x\cos2x=0\)
\(\Leftrightarrow\)\(4\sin3x+\sin5x-\sin3x+\sin x=0\)
\(\Leftrightarrow3\sin3x+\sin5x+\sin x=0\)
\(\Leftrightarrow3\sin3x+2\sin3x\cos2x=0\)
\(\Leftrightarrow\sin3x\left(3+2\cos2x\right)=0\)
Đáp số : \(x=k\dfrac{\pi}{3},k\in\mathbb{Z}\)
\(cosx+cos3x+cos2x+cos4x=0\)
\(\Leftrightarrow2cos2x.cosx+2cos3x.cosx=0\)
\(\Leftrightarrow cosx.\left(cos2x+cos3x\right)=0\)
\(\Leftrightarrow cosx.cos\frac{5x}{2}.cos\frac{x}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cos\frac{5x}{2}=0\\cos\frac{x}{2}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\\x=\pi+k2\pi\end{matrix}\right.\)
\(sinx+sin7x+sin3x+sin5x=0\)
\(\Leftrightarrow2sin4x.cos3x+2sin4x.cosx=0\)
\(\Leftrightarrow sin4x\left(cos3x+cosx\right)=0\)
\(\Leftrightarrow sin4x.cos2x.cosx=0\)
\(\Leftrightarrow sin4x=0\)
\(\Rightarrow4x=k\pi\Rightarrow x=\frac{k\pi}{4}\)
Lý do chỉ cần 1 pt sin4x=0 do sin4x bao hàm cả cosx và cos2x ở trong đó