K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 8 2020

\(\Leftrightarrow sin4x\left(sin5x+sin3x\right)-sin2x.sinx=0\)

\(\Leftrightarrow2sin^24x.cosx-2sin^2x.cosx=0\)

\(\Leftrightarrow cosx\left(2sin^24x-2sin^2x\right)=0\)

\(\Leftrightarrow cosx\left(1-cos8x-1+cos2x\right)=0\)

\(\Leftrightarrow cosx\left(cos2x-cos8x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos8x=cos2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=2x+k2\pi\\8x=-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{k\pi}{3}\\x=\frac{k\pi}{5}\end{matrix}\right.\)

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

20 tháng 12 2021
20 tháng 12 2021
21 tháng 9 2021

\(a,\sin2x=\dfrac{-1}{2}\Leftrightarrow\sin2x=\sin\left(-\dfrac{\pi}{6}\right)\\ \Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{\pi}{6}+k2\pi\\2x=\pi+\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k2\pi\\x=\dfrac{7\pi}{12}+k2\pi\end{matrix}\right.\left(k\in Z\right)\)

21 tháng 9 2021

a, \(sin2x=-\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{\pi}{6}+k2\pi\\2x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k\pi\\x=\dfrac{7\pi}{12}+k\pi\end{matrix}\right.\)

a: \(\Leftrightarrow2\cdot\sin3x\cdot\cos x-2\cos^2x=0\)

\(\Leftrightarrow\cos x\left(\sin3x-\cos x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\\sin3x=\cos x=\sin\left(\dfrac{\Pi}{2}-x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\3x=\dfrac{\Pi}{2}-x+k2\Pi\\3x=\dfrac{\Pi}{2}+x+k2\Pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{2}\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)

b: \(\Leftrightarrow\sin x+\sin5x+\sin^2x=0\)

\(\Leftrightarrow\sin x=0\)

hay \(x=k\Pi\)

17 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

28 tháng 6 2021

1.Pt \(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=sin\left(x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{6}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\\2x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)\(\left(k\in Z\right)\)

2.\(sin^22x+cos^23x=1\)

\(\Leftrightarrow\dfrac{1-cos4x}{2}+\dfrac{1+cos6x}{2}=1\)

\(\Leftrightarrow cos6x=cos4x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{5}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow x=\dfrac{k\pi}{5}\)\(\left(k\in Z\right)\) (Gộp nghiệm)

Vậy...

3. \(Pt\Leftrightarrow\left(sinx+sin3x\right)+\left(sin2x+sin4x\right)=0\)

\(\Leftrightarrow2.sin2x.cosx+2.sin3x.cosx=0\)

\(\Leftrightarrow2cosx\left(sin2x+sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin3x=-sin2x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\sin3x=sin\left(\pi+2x\right)\end{matrix}\right.\)(\(k\in Z\))

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)(\(k\in Z\))\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\) (\(k\in Z\))

Vậy...

4. Pt\(\Leftrightarrow\dfrac{1-cos2x}{2}+\dfrac{1-cos4x}{2}=\dfrac{1-cos6x}{2}\)

\(\Leftrightarrow cos2x+cos4x=1+cos6x\)

\(\Leftrightarrow2cos3x.cosx=2cos^23x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\cosx=cos3x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=-k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy...