K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
20 tháng 7 2023

Điều kiện xác định: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

\(\left(x-3\right)\sqrt{x^2-4}-\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\sqrt{x^2-4}-x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x^2-4}=x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\\left\{{}\begin{matrix}x\ge-3\\x^2-4=x^2+6x+9\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\\left\{{}\begin{matrix}x\ge-3\\6x=-13\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\\left\{{}\begin{matrix}x\ge-3\\x=-\dfrac{13}{6}\end{matrix}\right.\end{matrix}\right.\)

Kết hợp với điều kiện xác định, ta được: \(\left[{}\begin{matrix}x=3\\x=-\dfrac{13}{6}\end{matrix}\right.\)

Vậy nghiệm của phương trình là S = \(\left\{-\dfrac{13}{6};3\right\}\)

20 tháng 7 2023