Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2sin^3x+2\sqrt{3}sin^2x.cosx-2sin^2x+cos\left(2x+\dfrac{\pi}{3}\right)}{2cosx-\sqrt{3}}=0\)
:v bn ns v là bn bik hết là dạng gì rr mà lm ko đc á :))
Em ms hok cái này nên ko chắc lắm ạ :))
a/ \(\Leftrightarrow2\sin^2x.\cos x+3\sin x-4\sin^3x-4\cos^3x=0\)
Xét \(\sin^3x=0\) ko phải là nghiệm của PT
Xét \(\sin^3x\ne0\)
\(\Leftrightarrow2.\cot x+\frac{3}{\sin^2x}-4-4.\cot^3x=0\)
\(\Leftrightarrow4\cot^3x-3\cot^2x-2\cot x+1=0\)
Sau đó chị giải nghiệm là xong, thú thật e kém về phần gpt b3 trở lên nên sợ sai lắm :))
câu b khá là dài vì phải phân tích cos^3 2x nên ngày mai e giải nốt ạ :))
Với \(cosx=0\) không phải nghiệm
Với \(cosx\ne0\) , chia 2 vế cho \(cos^3x\):
\(4tan^3x+3tan^2x-tanx.\left(1+tan^2x\right)-1=0\)
\(\Leftrightarrow3tan^3x+3tan^2x-tanx-1=0\)
\(\Leftrightarrow\left(tanx+1\right)\left(3tan^2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{1}{\sqrt{3}}\\tanx=-\dfrac{1}{\sqrt{3}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=\pm\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow sin^3x-sin^2x.cosx+3\left(sin^2x.cosx-cos^3x\right)=0\)
\(\Leftrightarrow sin^2x\left(sinx-cosx\right)+\left(sinx-cosx\right)\left(3sinx.cosx+3cos^2x\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sin^2x+3sinx.cosx+3cos^2x\right)=0\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\left[\left(sinx+\frac{3}{2}cosx\right)^2+\frac{3}{4}cos^2x\right]=0\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
1.
\(3sin^22x-2sin2x.cos2x-4cos^22x=2\)
\(\Leftrightarrow-\dfrac{3}{2}\left(1-2sin^22x\right)-2sin2x.cos2x-2\left(2cos^22x-1\right)=\dfrac{5}{2}\)
\(\Leftrightarrow sin4x+\dfrac{7}{2}cos4x=-\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{\sqrt{53}}{2}\left(\dfrac{2}{\sqrt{53}}sin4x+\dfrac{7}{\sqrt{53}}cos4x\right)=-\dfrac{5}{2}\)
\(\Leftrightarrow sin\left(4x+arccos\dfrac{2}{\sqrt{53}}\right)=-\dfrac{5}{\sqrt{53}}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+arccos\dfrac{2}{\sqrt{53}}=arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+k2\pi\\4x+arccos\dfrac{2}{\sqrt{53}}=\pi-arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}arccos\dfrac{2}{\sqrt{53}}+\dfrac{1}{4}arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{4}-\dfrac{1}{4}arccos\dfrac{2}{\sqrt{53}}-\dfrac{1}{4}arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+\dfrac{k\pi}{2}\end{matrix}\right.\)
2.
\(2\sqrt{3}cos^2x+6sinx.cosx=3+\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}\left(2cos^2x-1\right)+6sinx.cosx=3\)
\(\Leftrightarrow\sqrt{3}cos2x+3sin2x=3\)
\(\Leftrightarrow2\sqrt{3}\left(\dfrac{1}{2}cos2x+\dfrac{\sqrt{3}}{2}sin2x\right)=3\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\pi\end{matrix}\right.\)
a, \(A=\dfrac{3sin^2\left(x\right)-cos^2\left(x\right)}{2sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\dfrac{cos^2\left(x\right)}{sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\dfrac{1}{tan^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\left(-\dfrac{3}{2}\right)^2=-3\)
b, \(A=\dfrac{sin^2\left(x\right)-5cos^2\left(x\right)}{2cos^2\left(x\right)}=\dfrac{1}{2}\dfrac{sin^2\left(x\right)}{cos^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\dfrac{1}{cot^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\left(\dfrac{5}{3}\right)^2-\dfrac{5}{2}=\dfrac{55}{18}\)
Lời giải:
a.
\(A=\frac{3}{2}-2(\frac{\cos x}{\sin x})^2=\frac{3}{2}-2.(\frac{1}{\tan x})^2=\frac{3}{2}-\frac{1}{2}(\frac{-3}{2})^2=-3\)
b.
\(A=\frac{1}{2}(\frac{\sin x}{\cos x})^2-\frac{5}{2}=2(\frac{1}{\cot x})^2-\frac{5}{2}=2(\frac{5}{3})^2-\frac{5}{2}=\frac{55}{18}\)
a/
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(3tan^3x+2tan^2x=tanx\)
\(\Leftrightarrow tanx\left(3tan^2x+2tanx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\3tan^2x+2tanx-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\tanx=-1\\tanx=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=-\frac{\pi}{4}+k\pi\\x=arctan\left(\frac{1}{3}\right)+k\pi\end{matrix}\right.\)
b/ \(\Leftrightarrow3sinx+cos^3x=5sinx.cos^2x\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(3tanx.\frac{1}{cos^2x}+1=5tanx\)
\(\Leftrightarrow3tanx\left(1+tan^2x\right)-5tanx+1=0\)
\(\Leftrightarrow3tan^3x-2tanx+1=0\)
\(\Leftrightarrow\left(tanx+1\right)\left(3tan^2x-3tanx+1\right)=0\)
\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)