Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hà thúy anh - Toán lớp 8 | Học trực tuyến Vừa có ng giải xong
\(A=-\left(4x^2-4x+1\right)-\left(y^2+6y+9\right)+11\\ A=-\left(2x-1\right)^2-\left(y+3\right)^2+11\le11\\ A_{max}=11\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
\(\Leftrightarrow x^2+3xy+3y^2+xy-2x-6y=5\)
\(\Leftrightarrow x\left(x+3y\right)+y\left(x+3y\right)-2\left(x+3y\right)=5\)
\(\Leftrightarrow\left(x+y-2\right)\left(x+3y\right)=5\)
Bảng giá trị:
x+y-2 | -5 | -1 | 1 | 5 |
x+3y | -1 | -5 | 5 | 1 |
x | -4 | 4 | 2 | 10 |
y | 1 | -3 | 1 | -3 |
Vậy \(\left(x;y\right)=\left(-4;1\right);\left(4;-3\right);\left(2;1\right);\left(10;-3\right)\)
a) A = x2 - 2x + 1 - y2 + 2x - 1
= (x2 - 2x + 1)-( y2-2x+1)
= (x-1)2-(y-1)2
= (x-1-y+1)(x-1+y-1)
b) A = x2 - 4x + 4 - y2 - 6y - 9
= (x2 - 4x + 4)-(y2+6y+9)
= (x-2)2-(y+3)2
= (x-2-y-3)(x-2+y+3)
c) A = 4x2 - 4x + 1 - y2 - 8y - 16
= (4x2 - 4x + 1) - (y2+8y+16)
= (2x-1)2-(y+4)2
= (2x-1-y-4)(2x-1+y+4)
d) A = x2 - 2xy + y2 - z2 + 2zt - t2
=(x2 - 2xy + y2)-(z2- 2zt + t2)
= (x-y)2-(z-t)2
=(x-y-z+t)(z-y+z-t)
câu d mik có sửa lại đề vì mik thấy đề hơi sai
\(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)+\left(2x-y\right)^2=\left(2x-y\right)\left(2+2x-y\right)\)
\(B=9x^2-\left(y^2-4y+4\right)=9x^2-\left(y-2\right)^2=\left(3x-y+2\right)\left(3x+y-2\right)\)
\(C=-25x^2+y^2-6y+9=\left(y^2-6y+9\right)-25x^2=\left(y-3\right)^2-\left(5x\right)^2=\left(y-3-5x\right)\left(y-3+5x\right)\)\(D=x^2-4x-y^2-8y-12=\left(x^2-4x+4\right)-\left(y^2+8y+16\right)=\left(x-2\right)^2-\left(y+4\right)^2=\left(x-2-y-4\right)\left(x-2+y+4\right)=\left(x-y-6\right)\left(x+y+2\right)\)
(x2-xy-6y2)+(2x-6y)-10 =0
[(x2-3xy)+(2xy-6y2)] + 2(x-3y) -10 = 0
(x-3y).(x+2y) + 2(x-3y) -10 = 0
(x-3y).(x+2y+2)=10
vì x,y nguyên x-3y và x+2y+2 phải nguyên
mà 10=1.10=(-1).(-10)=2.5=(-2).(-5)=10.1=(-10).(-1)=5.2=(-5).(-2)
4x2 + 4x + 1 = x2
⇔ 4x2 + 4x + 1 – x2 = 0
⇔ (4x2 + 4x + 1) – x2 = 0
⇔ (2x + 1)2 – x2 = 0
⇔ (2x + 1 – x)(2x + 1 + x) = 0
(Sử dụng hằng đẳng thức)
⇔ (x + 1)(3x + 1) = 0
⇔ x + 1 = 0 hoặc 3x + 1 = 0
+ x + 1 = 0 ⇔ x = -1.
+ 3x + 1 = 0 ⇔ 3x = -1 ⇔
Vậy phương trình có tập nghiệm
Ak mk bị nhầm tí sorry nha giải tiếp đoạn đó nha
(2x+1)^2+(y-3)^2 = 34 = 5^2 + 9^2
<=> (2x+1)^2 = 5^2 ; (y-3)^2 = 9^2 hoặc (2x+1)^2 = 9^2 ; (y-3)^2 = 5^2
<=> x=2 hoặc x=-3 ; y=12 hoặc y=-6
hoặc :
x=4 ; x=-5 hoặc y=8 ; y=-2
Vậy ............
Tk mk nha
pt <=> (4x^2+4x+1)+(y^2-6y+9) = 14
<=>(2x+1)^2 + (y-3)^2 = 14
<=> (2x+1)^2 = 14 - (y-3)^2 < = 14
Mà 2x+1 lẻ nên (2x+1)^2 thuộc {1;9}
+, Với (2x+1)^2 = 1 => (y-3)^2 = 13 => ko tồn tại y thuộc Z
+, Với (2x+1)^2 = 9 => (y-3)^2 = 5 => ko tồn tại y thuộc Z
Vậy ko tồn tại cặp số x,y thuộc Z t/m pt
Tk mk nha