Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(15x-49y=11\Leftrightarrow x=\frac{11+49y}{15}=\frac{11+4y+45y}{15}=\frac{11+4y}{15}+3y\)
x; y là nghiệm nguyên dương <=> \(\frac{11+4y}{15}\)nguyên dương
<=> 11 + 4y chia hết cho 15 <=> 11 + 4y = 15t ( t là số tự nhiên )
<=> y = \(\frac{15t-11}{4}=\frac{16t-12-t+1}{4}=4t-3-\frac{t-1}{4}\)
=> t - 1 chia hết cho 4
=> Đặt t - 1 = 4k => t = 4k + 1 (k là số tự nhiên)
=> y = 15k + 1 ; x = 49k + 4
Vì x; y nhỏ nhất => Chọn k = 0 => x = 4; y = 1 là nghiệm cần tìm
\(x^3-5x^2-2x^2+10x+5x-25=0\)
<=>\(x^2.\left(x-5\right)-2x\left(x-5\right)+5.\left(x-5\right)=\left(x-5\right)\left(x^2-2x+5\right)=0\)
<=>hoặc x-5=0 =>x=5
hoặc x^2-2x+5=0 (tự biến đổi ra ) <=>(x-1)^2=-4(loại)
Vậy nghiệm của pt là x=5
<=>\(x^3-7x^2+15x-25=\left(x-5\right)\left(x^2-2x+5\right)\)
=>\(x^2-2x+5=0\)
có biệt thức
\(\left(-2\right)^2-4\left(1.5\right)=-16\)
=>PT trên ko có nghiệm
=>x=5
Ta có 2xy-4x+y=7
=> 2xy-4x+y-2=7-2
=> 2x(y-2)+(y-2)=5
=> (y-2)(2x+1)=5
Do x,y là số nguyên nên y-2 và 2x+1 là ước của 5. Ta có bảng sau:
2x+1 | -5 | -1 | 1 | 5 |
x | -3 | -1 | 0 | 2 |
y-2 | -1 | -5 | 5 | 1 |
y | 1 | -3 | 7 | 3 |
Vậy...
\(\Leftrightarrow2x^2-xy+4xy-2y^2=7\)
\(\Leftrightarrow\left(x+2y\right)\left(2x-y\right)=7\)
\(\Leftrightarrow\orbr{\begin{cases}x+2y=1\\2x-y=7\end{cases}}\)hoặc \(\orbr{\begin{cases}x+2y=-1\\2x-y=-7\end{cases}}\)hoặc \(\orbr{\begin{cases}x+2y=7\\2x-y=1\end{cases}}\)hoặc \(\orbr{\begin{cases}x+2y=-7\\2x-y=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\y=-1\end{cases}}\) hoặc \(\orbr{\begin{cases}x=-3\\y=1\end{cases}}\) hoặc\(\orbr{\begin{cases}x=\frac{9}{5}\\y=\frac{13}{5}\end{cases}}\)hoặc (loại) \(\orbr{\begin{cases}x=\frac{-9}{5}\\y=\frac{-13}{5}\end{cases}}\)(loại)
vậy, phương trình có nghiệm nguyên (x;y)=(3;-1);(-3;1)
khhong bạn ạ. Đề là y^3 , đề y^2 mik giải đc rồi nhé
Lời giải:
\(15x-49y=11\Rightarrow 15x=49y+11\). Vì $x,y$ là các số nguyên nên:
\(\Rightarrow 49y+11\vdots 15\)
\(\Leftrightarrow 45y+4y+11\vdots 15\)
\(\Leftrightarrow 4y+11\vdots 15\Rightarrow 4y=15k-11\) (\(k\in\mathbb{Z}\) )
Lại có: \(15k-11=4y\vdots 4\)
\(\Leftrightarrow 16k-k-8-3\vdots 4\)
\(\Leftrightarrow -(k+3)\vdots 4\Leftrightarrow k+3\vdots 4\). Đặt \(k=4m-3(m\in\mathbb{Z}\) )
Khi đó: \(4y=15k-11=15(4m-3)-11=60m-56\)
\(\Rightarrow y=15m-14\)
Thay vào pt ban đầu: \(x=\frac{49y+11}{15}=\frac{49(15m-14)+11}{15}=49m-45\)
Vậy PT có nghiệm nguyên $(x,y)=(49m-45,15m-14)$ với $m\in\mathbb{Z}$