Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3 - 7x + 6 = x3 - x - 6x + 6 = 0
⇔ x(x2 - 1) - 6(x - 1) = 0
⇔ x(x - 1)(x + 1) - 6(x - 1) = 0
⇔ (x - 1)(x2 + x - 6) = 0
⇔ (x - 1)(x - 2)(x + 3) = 0
\(\text{⇔}\left[{}\begin{matrix}x-1=0\\x-2=0\\x+3=0\end{matrix}\right.\)
\(\text{⇔}\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là S = {1;2;-3}
Chúc bạn học tốt@@
\(2x^4-7x^3+9x^2-7x+2=0\)
\(\Leftrightarrow2x^4-x^3-6x^3+3x^2+6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x^4-x^3\right)-\left(6x^3-3x^2\right)+\left(6x^2-3x\right)-\left(4x-2\right)=0\)
\(\Leftrightarrow x^3\left(2x-1\right)-3x^2\left(2x-1\right)+3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)(1)
Ta dễ thấy \(x^3-3x^2+3x-2>0\forall x\) nên để PT (1) có nghiệm \(\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy nghiệp phương trình trên là \(S=\left\{\frac{1}{2}\right\}\)
Sủa chút : \(\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(x^3-2x^2\right)+\left(-x^2+2x\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)
a)thay k=0, ta có
\(4x^2-25+0^2+4.0.x=0\)
\(\Leftrightarrow4x^2-25+0+0=0\)
\(\Leftrightarrow4x^2-25=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\2x+5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{\frac{5}{2};-\frac{5}{2}\right\}\)
b) Thay k=-3, ta có:
\(4x^2-25+\left(-3\right)^2+4\left(-3\right)x=0\)
\(\Leftrightarrow4x^2-25+9-12x=0\)
\(\Leftrightarrow4x^2-16-12x=0\)
\(\Leftrightarrow4x^2-16+4x-16x=0\)
\(\Leftrightarrow\left(4x^2+4x\right)-\left(16x+16\right)=0\)
\(\Leftrightarrow4x\left(x+1\right)-16\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-16\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+1=0\\4x-16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=4\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{-1;4\right\}\)
c) Thay x=-2, ta có:
\(4\left(-2\right)^2-25+k^2+4\left(-2\right)k=0\)
\(\Leftrightarrow16-25+k^2-8k=0\)
\(\Leftrightarrow-9+k^2-8k=0\)
\(\Leftrightarrow-9+k^2+k-9k=0\)
\(\Leftrightarrow\left(k^2+k\right)-\left(9k+9\right)=0\)
\(\Leftrightarrow k\left(k+1\right)-9\left(k+1\right)=0\)
\(\Leftrightarrow\left(k+1\right)\left(k-9\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}k+1=0\\k-9=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k=-1\\k=9\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{-1;9\right\}\)
ĐK: x khác -1 và x khác 1.
\(PT\Leftrightarrow\frac{7x.\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{5x.\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x+21}{\left(x-1\right)\left(x+1\right)}=0\)
<=> 7x2 + 7x - 5x2 + 5x + x + 21 = 0
<=> 2x2 + 13x + 21 = 0
<=> 2x2 + 6x + 7x + 21 = 0
<=> 2x.(x + 3) + 7.(x + 3) = 0
<=> (x + 3).(2x + 7) = 0
<=> x + 3 = 0 hoặc 2x + 7 = 0
<=> x = -3 hoặc x = -7/2
Vậy S = {-7/2; -3}.
-x3 + x2 + 4 = 0
<=> -(x - 2)(x2 + x + 2) = 0
<=> x - 2 = 0
x = 0 + 2
x = 2
Mà vì x2 + x + 2 # 0
=> x = 2
\(x^3-5x^2-2x^2+10x+5x-25=0\)
<=>\(x^2.\left(x-5\right)-2x\left(x-5\right)+5.\left(x-5\right)=\left(x-5\right)\left(x^2-2x+5\right)=0\)
<=>hoặc x-5=0 =>x=5
hoặc x^2-2x+5=0 (tự biến đổi ra ) <=>(x-1)^2=-4(loại)
Vậy nghiệm của pt là x=5
<=>\(x^3-7x^2+15x-25=\left(x-5\right)\left(x^2-2x+5\right)\)
=>\(x^2-2x+5=0\)
có biệt thức
\(\left(-2\right)^2-4\left(1.5\right)=-16\)
=>PT trên ko có nghiệm
=>x=5