Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đơn giản là dùng phép thế:
\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)
\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)
Thế vào pt cuối:
\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)
Vậy là xong
b/ Sử dụng hệ số bất định:
\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)
\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)
Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)
Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):
\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)
\(a)DK:z\ne1\)
\(\left\{{}\begin{matrix}\frac{4}{z-1}+2x=7\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{z-1}+x=\frac{7}{2}=3,5\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-5y=-5\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2y=-8\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\5x=15\\\frac{2}{z-1}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=5\end{matrix}\right.\left(T/m\right)\)
Vậy ...
\(b)DK:\left\{{}\begin{matrix}x,y,z\ne0\\x,y,z>0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+\frac{1}{y}=2\\y+\frac{1}{z}=2\\z+\frac{1}{x}=2\end{matrix}\right.\)
\(\Leftrightarrow x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}=6\)
\(\Leftrightarrow\left(x-2.\sqrt{x}.\frac{1}{\sqrt{x}}+\frac{1}{x}\right)+\left(y-2.\sqrt{y}.\frac{1}{\sqrt{y}}+\frac{1}{y}\right)+\left(z-2\sqrt{z}.\frac{1}{\sqrt{z}}+\frac{1}{z}\right)+2+2+2=6\)
\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^2=0\)
Vì \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2;\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2;\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=\frac{1}{\sqrt{x}}\\\sqrt{y}=\frac{1}{\sqrt{y}}\\\sqrt{z}=\frac{1}{\sqrt{z}}\end{matrix}\right.\)
\(\Leftrightarrow x=y=z=1\left(T/m\right)\)
Vậy ...
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x+y+z}{x\left(y+z\right)}=\frac{1}{2}\\\frac{x+y+z}{y\left(z+x\right)}=\frac{1}{3}\\\frac{x+y+z}{z\left(x+y\right)}=\frac{1}{4}\end{matrix}\right.\) lần lượt chia vế cho vế ta được hệ:
\(\left\{{}\begin{matrix}\frac{y\left(z+x\right)}{x\left(y+z\right)}=\frac{3}{2}\\\frac{z\left(x+y\right)}{x\left(y+z\right)}=2\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\yz=2xy+xz\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\3yz=6xy+3zx\end{matrix}\right.\)
\(\Rightarrow yz=5xy\Rightarrow z=5x\)
Thế vào \(yz=2xy+zx\Rightarrow5xy=2xy+5x^2\)
\(\Leftrightarrow3xy=5x^2\Rightarrow y=\frac{5x}{3}\)
Thế vào pt đầu: \(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\Rightarrow\frac{23}{20x}=\frac{1}{2}\Rightarrow x=\frac{23}{10}\)
\(\Rightarrow y=\frac{23}{6};z=\frac{23}{2}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)
\(\Leftrightarrow\left(x+y\right)\left(xy+yz+zx+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
Thay vào pt đầu và cuối
\(x+y+z=a\)
\(\Leftrightarrow\left(x+y+z\right)^2=a^2\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=a^2\)
\(\Leftrightarrow b^2+2\left(xy+yz+zx\right)=a^2\)
\(\Leftrightarrow xy+yz+zx=\frac{a^2-b^2}{2}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{c}\Leftrightarrow xyz=\left(xy+yz+zx\right)c=\frac{a^2-b^2}{2}.c\)
\(x^2+y^2+z^2=b^2\)
\(\Leftrightarrow x^2+\left(y+z\right)^2-2yz=b^2\)
\(\Leftrightarrow x^2+\left(a-x\right)^2-2\left[\frac{\left(a^2-b^2\right)c}{2x}\right]=b^2\)
\(\Leftrightarrow x^2+a^2-2ax+x^2-\frac{\left(a^2-b^2\right)c}{x}=b^2\)
\(\Leftrightarrow2x^3-2ax^2+\left(a^2-b^2\right)x-\left(a^2-b^2\right)c=0\)
\(x,y,z\) là nghiệm của phương trình trên.
~~~~~ Không chắc lắm ạ ~~~~~~Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
ĐKXĐ: ...
\(\left\{{}\begin{matrix}x+y+z=3\\xy+yz+zx=\frac{1}{3}xyz\\x^2+y^2+z^2=17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=3\\xy+yz+zx=\frac{1}{3}xyz\\xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=3\\xy+yz+zx=-4\\xyz=-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=3-x\\yz=-4-x\left(y+z\right)=-4-x\left(3-x\right)\\xyz=-12\end{matrix}\right.\)
\(\Rightarrow x\left(-4-3x+x^2\right)=-12\)
\(\Leftrightarrow x^3-3x^2-4x+12=0\)
\(\Leftrightarrow...\)