Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(dk:x\ne-\dfrac{2}{3};x\ne-1\right)pt\Leftrightarrow\dfrac{2x}{3x^2-x+2}-\dfrac{7x-3x^2-5x-2}{3x^2+5x+2}=0\Leftrightarrow\dfrac{2x}{3x^2-x+2}-\dfrac{3x^2+12x+2}{3x^2+5x+2}=0\left(1\right)\)
\(x=0\) \(không\) \(là\) \(nghiệm\left(1\right)\)
\(x\ne0\Rightarrow\left(1\right)\Leftrightarrow\dfrac{2}{3x-1+\dfrac{2}{x}}-\dfrac{3x+12+\dfrac{2}{x}}{3x+5+\dfrac{2}{x}}=0\)
\(đặt:3x+\dfrac{2}{x}=t\) \(do:x\ne-\dfrac{2}{3};x\ne-1;\Rightarrow t\ne-5\)
\(x>0\Rightarrow t\ge2\sqrt{3.2}=2\sqrt{6}\)
\(x< 0\Rightarrow-t\ge2\sqrt{6}\Rightarrow t\le-2\sqrt{6}\Rightarrow\left[{}\begin{matrix}t\ne-5;t\le-2\sqrt{6}\\t\ge2\sqrt{6}\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{t-1}-\dfrac{t+12}{t+5}=0\Rightarrow2\left(t+5\right)-\left(t+12\right)\left(t-1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=-11\left(tm\right)\\t=2\left(ktm\right)\end{matrix}\right.\)
\(t=-11=3x+\dfrac{2}{x}\Leftrightarrow3x^2+2=-11x\Leftrightarrow3x^2+11x+2=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{97}}{6}\left(tm\right)\\x=\dfrac{-11-\sqrt{97}}{6}\left(tm\right)\end{matrix}\right.\)
bài nó dàiiiiiiii , khôg hiểu chỗ nèo hỏi lại mình hen
\(\dfrac{2x}{3x^2-x+2}-\dfrac{7x}{3x^2+5x+2}=1\)
\(\Leftrightarrow\left(\dfrac{2x}{3x^2-x+2}-\dfrac{7x}{\left(3x+2\right)\left(x+1\right)}\right)=1\)
\(\Leftrightarrow\dfrac{2x\left(3x+2\right)\left(x+1\right)-\left(7x.\left(3x^2-x+2\right)\right)}{\left(3x^2-x+2\right).\left(3x+2\right)\left(x+1\right)}=\dfrac{-15x^3+17x^2-10x}{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}\)
\(\Leftrightarrow\dfrac{-15x^3+17^2-10x }{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}-1=0\)
rồi quy đồng tùm lum từa lưa nữa được như này:
\(\Leftrightarrow\dfrac{-9x^4-27x^3+10x^2-18x-4}{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}=0\)
\(\Leftrightarrow-9x^4-27x^3+10x^2-18x-4=0\)
\(\Leftrightarrow x^2+\dfrac{5}{3}.x+\dfrac{25}{26}=0\)
\(\Leftrightarrow x+\left(\dfrac{5}{6}\right)^2=\dfrac{1}{36}\)
Sử dụng công thức bậc 2 hen:
\(\Leftrightarrow x=\dfrac{-5\pm\sqrt{1}}{6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-5+\sqrt{1}}{6}\\x_2=\dfrac{-5-\sqrt{1}}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{2}{3}\\x_2=-1\end{matrix}\right.\)
Nhận thấy \(x=0\) không phải nghiệm, chia cả tử và mẫu vế trái cho x:
\(\frac{2}{3x-5+\frac{2}{x}}+\frac{13}{3x+1+\frac{2}{x}}=6\)
Đặt \(3x-5+\frac{2}{x}=a\)
\(\frac{2}{a}+\frac{13}{a+6}=6\)
\(\Leftrightarrow6a\left(a+6\right)=2\left(a+6\right)+13a\)
\(\Leftrightarrow6a^2+34a-12=0\Rightarrow\left[{}\begin{matrix}a=\frac{1}{3}\\a=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x-5+\frac{2}{x}=\frac{1}{3}\\3x-5+\frac{2}{x}=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x^2-\frac{16}{3}x+2=0\\3x^2+x+2=0\end{matrix}\right.\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{2x}{3x^2-4x+1}-\frac{7x}{3x^2+2x+1}=6\)
\(\Leftrightarrow\frac{2}{3x-4+\frac{1}{x}}-\frac{7}{3x+2+\frac{1}{x}}=6\)
Đặt \(3x-4+\frac{1}{x}=a\)
\(\frac{2}{a}-\frac{7}{a+6}=6\)
\(\Leftrightarrow2\left(a+6\right)-7a=6a\left(a+6\right)\)
\(\Leftrightarrow6a^2+41a-12=0\)
Nghiệm xấu, bạn coi lại đề
\(x=0\) không phải nghiệm, pt tương đương:
\(\frac{12}{x+4+\frac{2}{x}}-\frac{3}{x+2+\frac{2}{x}}=1\)
Đặt \(x+2+\frac{2}{x}=a\)
\(\frac{12}{a+2}-\frac{3}{a}=1\Leftrightarrow12a-3\left(a+2\right)=a\left(a+2\right)\)
\(\Leftrightarrow a^2-7a+6=0\Rightarrow\left[{}\begin{matrix}a=1\\a=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2+\frac{2}{x}=1\\x+2+\frac{2}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+2=0\\x^2-4x+2=0\end{matrix}\right.\)
a) 2x-(3x-5x)=4(x+3)
2x - 3x + 5x = 4x +12
4x = 4x + 12
0x= 12 => ko có giá trị nào của x thỏa mãn( cái kết luận này mik ko bik đúng hay sai)
b) 5(x-3)-4=2(x-1)+7
5x-15 - 4 = 2x-2 + 7
5x-19 = 2x+5
5x-2x = 5+19
3x = 24
x= 8
c) 4(x+3)=-7X+17
4x +12 = -7x + 17
4x+7x = 17-12
11x = 5
x = 5/11
1) 2x - (3x -5x) = 4(x+3)
\(\Leftrightarrow\)2x +2x = 4x +12
\(\Leftrightarrow\)4x = 4x +12
\(\Leftrightarrow\)0x = 12
Vậy phương trình đã cho vô nghiệm
2) 5(x-3) - 4 = 2(x-1) +7
\(\Leftrightarrow\)5x - 15 - 4 = 2x - 2 +7
\(\Leftrightarrow\) 5x - 1 = 2x +5
\(\Leftrightarrow\) 5x - 2x = 5 +1
\(\Leftrightarrow\) 3x = 6
\(\Leftrightarrow\) x = 2
Vậy tập nghiệm của phương trình là S= {2}
3) 4(x + 3) = -7x + 17
\(\Leftrightarrow\)4x + 12 = -7x +17
\(\Leftrightarrow\)4x + 7x = 17 - 12
\(\Leftrightarrow\) 11x = 5
\(\Leftrightarrow\) x = \(\frac{5}{11}\)
Vậy tập nghiệm của phương trình là S={ \(\frac{5}{11}\)}
\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\) (Đkxđ: \(x\ne-7;x\ne\frac{3}{2}\))
\(\Rightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)
\(\Leftrightarrow6x^2-9x-4x-6x^2-42x-x=7-6\)
\(\Leftrightarrow-56x=1\)
\(\Leftrightarrow x=-\frac{1}{56}\) (t/m đkxđ)
Vậy \(S=\left\{-\frac{1}{56}\right\}\)
ĐKXĐ: x khác -7 và 3/2
Từ đề bài <=> (3x-2)(2x-3) = (6x+1)(x+7)
<=> 6x^2-4x-9x+6 = 6x^2+x+42x+7
<=> -13x+6 = 43x+7
<=> 6-7 = 43x+13x
<=> 56x = -1
<=> x = -1/56 (TM)
Vậy ...