giải phươ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2022

Đặt \(x^2=u\left(u\ge0\right)\), pt đã cho trở thành \(-36u^2+97u-36=0\) (*)

pt (*) có \(\Delta=97^2-4\left(-36\right)\left(-36\right)=4225>0\)

Nên pt này có 2 nghiệm phân biệt \(\left[{}\begin{matrix}u_1=\dfrac{-97+\sqrt{4225}}{2.\left(-36\right)}=\dfrac{4}{9}\left(nhận\right)\\u_2=\dfrac{-97-\sqrt{4225}}{2\left(-36\right)}=\dfrac{9}{4}\left(nhận\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=\dfrac{4}{9}\\x^2=\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{2}{3}\\x=\pm\dfrac{3}{2}\end{matrix}\right.\)

Vậy tập nghiệm của pt đã cho là \(S=\left\{\pm\dfrac{2}{3};\pm\dfrac{3}{2}\right\}\)

24 tháng 6 2016

a) \(a^2-5=0\)<=>\(\left(a-\sqrt{5}\right)\left(a+\sqrt{5}\right)=0\)

<=> \(\left[\begin{array}{nghiempt}a-\sqrt{5}=0\\a+\sqrt{5}=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}a=\sqrt{5}\\a=-\sqrt{5}\end{array}\right.\)

b)\(x^2-2\sqrt{11}x+11=\left(x-\sqrt{11}\right)^2=0\)

=>\(x+\sqrt{11}=0\)

=> x=\(\sqrt{11}\)

21 tháng 4 2020

Gọi x0 là nghiệm chung của 2 phương trình

Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)

\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)

Mà \(a\ne b\Rightarrow x_0=c\)

Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2

Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)

Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)

Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:

x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0

22 tháng 10 2020

c, ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

\(\Leftrightarrow\sqrt{2x-2\sqrt{2x-1}}=2\)

\(\Leftrightarrow\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x-1}-1=2\\\sqrt{2x-1}-1=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x-1}=3\\\sqrt{2x-1}=-1\left(vn\right)\end{matrix}\right.\)

\(\sqrt{2x-1}=3\Leftrightarrow2x-1=9\Leftrightarrow x=5\left(tm\right)\)

22 tháng 10 2020

a, ĐKXĐ: \(x\in R\)

\(\sqrt{3x^2}=x+2\)

\(\Leftrightarrow\sqrt{3}\left|x\right|=x+2\)

TH1: \(\sqrt{3}x=x+2\)

\(\Leftrightarrow\left(\sqrt{3}-1\right)x=2\)

\(\Leftrightarrow x=\sqrt{3}+1\)

TH2: \(\sqrt{3}x=-x-2\)

\(\Leftrightarrow\left(\sqrt{3}+1\right)x=-2\)

\(\Leftrightarrow x=1-\sqrt{3}\)

19 tháng 2 2018

b)\(9\left(x-2\right)^2-4\left(x-1\right)^2=\left(9x^2-36x+36\right)-\left(4x^2+8x-4\right)\)

\(=9x^2-36x+36-4x^2+8x-4\)

\(=5x^2-28x+32\)

\(=\left(x-5\right)\left(5x-8\right)\)

\(\hept{\begin{cases}x-5=0\\5x-8=0\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\x=\frac{8}{5}=1\frac{3}{5}\end{cases}}\)

19 tháng 2 2018

a) \(\left(x+1\right)^2-4\left(x^2-2x+1\right)=0\)

\(\left(x^2+2x+1\right)-\left(4x^2-8x+4\right)=0\)

\(-3x^2+10x-3=0\)

\(\left(3-x\right)\left(3x-1\right)=0\)

\(\hept{\begin{cases}3-x=0\\3x-1=0\end{cases}}\)

\(\hept{\begin{cases}x=3\\x=\frac{1}{3}\end{cases}}\)