Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(\left|x+1\right|+\left|x-1\right|=1+\left|\left(x-1\right)\left(x+1\right)\right|\)
\(\Leftrightarrow\left|x-1\right|\left|x+1\right|-\left|x-1\right|-\left|x+1\right|+1=0\)
\(\Leftrightarrow\left(\left|x-1\right|-1\right)\left(\left|x+1\right|-1\right)=0\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=1\\\left|x+1\right|=1\end{cases}}\)
\(\Leftrightarrow x\in\left\{-2,0,2\right\}\)
aGiải phương trình |x-1|+|x-2|=|2x-3|
b)Giải phương trình 1/(x−2 )+ 2/(x−3) − 3/(x−5) = 1/(x^2 −5x+6)
\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+....+\dfrac{1}{\left(x+2020\right)\left(x+2021\right)=1}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+...+\dfrac{1}{x+2020}-\dfrac{1}{x+2021}=1\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2021}=1\)
\(\Leftrightarrow\dfrac{\left(x+2021\right)-\left(x+1\right)}{\left(x+1\right)\left(x+2021\right)}=1\)
\(\Leftrightarrow\dfrac{x+2021-x-1}{\left(x+1\right)\left(x+2021\right)}=1\)
\(\Leftrightarrow\dfrac{2020}{\left(x+1\right)\left(x+2021\right)}=1\)
\(\Leftrightarrow\left(x+1\right)\left(x+2021\right)=2020\)
\(\Leftrightarrow x^2+2021x+x+2021=2020\)
\(\Leftrightarrow x^2+2022x=-1\)
\(\Leftrightarrow x\left(x+2022\right)=-1\)
Đến đây bạn chia trường hợp để giaỉ ra nghiệm nguyên nhé
=>\(\dfrac{x-2-3x+3}{\left(x-1\right)\left(x-2\right)}=\dfrac{-1}{\left(x-1\right)\left(x-2\right)}\)
=>-2x+1=-1
=>-2x=-2
=>x=1(loại)
\(\dfrac{1}{x-1}-\dfrac{2}{2-x}=\dfrac{5}{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{1}{x-1}+\dfrac{2}{x-2}=\dfrac{5}{\left(x-1\right)\left(x-2\right)}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x-2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne2\end{matrix}\right.\)
Ta có : \(\dfrac{1}{x-1}+\dfrac{2}{x-2}=\dfrac{5}{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{x-2}{\left(x-1\right)\left(x-2\right)}+\dfrac{2\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}=\dfrac{5}{\left(x-1\right)\left(x-2\right)}\)
`=> x-2+2(x-1)=5`
`<=> x-2+2x-2=5`
`<=> 3x-4=5`
`<=> 3x=9`
`<=>x=3` ( thỏa mãn đk )
Vậy pt đã cho có nghiệm `x=3`
` @` Đề như này nhỉ ^^
\(chucbanhoctot\)
Sửa đề: \(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}ĐK:x\ne1\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1+2x-2=3x^2\)
\(\Leftrightarrow-2x^2+3x-1=0\)
\(\Leftrightarrow-\left(2x-1\right)\left(x-1\right)=0\Leftrightarrow x=\frac{1}{2};1\)
Vậy tập nghiệm của phương trình là S = { 1/2 ; 1 }
đk : x khác 1 ; -1
<=> \(-x\left(x+1\right)+x^2+2=2\left(x-1\right)\)
\(\Leftrightarrow-x+2=2x-2\Leftrightarrow x=\dfrac{4}{3}\)(tm)
\(\Leftrightarrow-x\left(x+1\right)+x^2+2=2x-2\)
\(\Leftrightarrow-x^2-x+x^2+2-2x+2=0\)
=>-3x+4=0
hay x=4/3(nhận)
ĐKXĐ: x ≠ ± 1;x ≠ ± 2
Phương trình
Vậy tập nghiệm của phương trình là S = { ± √ 2 }