K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2023

loading...  

6 tháng 3 2023

cais cuối là :

\(\Leftrightarrow x=1\left(ktm\right)\)

vậy pt ko có nghiệm á

26 tháng 1 2021

a, làm tương tự với phần b bài nãy bạn đăng 

b, \(\left(x+1\right)^2-5=x^2+11\)

\(\Leftrightarrow x^2+2x+1-5=x^2+11\)

\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)

Vậy tập nghiệm của phương trình là S = { 5 } ( kết luận như thế với các phần sau nhé ! ) 

c, \(3\left(3x-1\right)=3x+5\Leftrightarrow9x-3-3x-5=0\)

\(\Leftrightarrow6x-8=0\Leftrightarrow x=\frac{4}{3}\)

d, \(3x\left(2x-3\right)-3\left(3+2x^2\right)=0\)

\(\Leftrightarrow6x^2-9x-9-6x^2=0\Leftrightarrow-9x=9\Leftrightarrow x=-1\)

e, khai triển nó ra rút gọn rồi giải thôi nhé! ( tự làm )

f, \(\left(x-1\right)^2-x\left(x+1\right)+3\left(x-2\right)+5=0\)

\(\Leftrightarrow x^2-2x+1-x^2+x+3x-6+5=0\)

\(\Leftrightarrow2x=0\Leftrightarrow x=\frac{0}{2}\)vô lí 

Vậy phương trình vô nghiệm 

4 tháng 3 2020

a) (x - 2)3 + (3x - 1)(3x + 1) = (x + 1)3

<=> x3 - 6x2 + 12x - 8 + 9x2 - 1 - x3 - 3x2 - 3x - 1 = 0

<=> 9x - 10 = 0

<=> 9x = 10

<=> x = 10/9

Vậy S = {10/9}

b) (x + 1)(2x - 3) = (2x - 1)(x + 5)

<=> 2x2 - x - 3 - 2x2 - 9x + 5 = 0

<=> -10x + 2 = 0

<=> -10x = -2

<=> x = 1/5

Vậy S = {1/5}

c) (x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)

<=> x3 - 3x2 + 3x - 1 - x3 - 2x2 - x = 10x - 5x2 - 11x - 22

<=> -5x2 + 2x + 5x2 + x + 22 - 1 = 0

<=> 3x = -21

<=> x = -7

Vậy S = {-7}

d) (x - 3)(x + 4) - 2(3x - 2) = (x - 4)2

<=> x2 + x - 12 - 6x + 4 - x2 + 8x - 16 = 0

<=> 3x - 24 = 0

<=> 3x = 24

<=> x = 8

Vậy S = {8}

e) x(x + 3)2 - 3x = (x + 2)3 + 1

<=> x3 + 6x2 + 9x - 3x = x3 + 6x2 + 12x + 8 + 1

<=> x3 + 6x2 + 6x - x3 - 6x2 - 12x = 9

<=> -6x = 9

<=> x = -3/2

Vậy S = {-3/2}

f) (x + 1)(x2 - x + 1) - 2x = x(x + 1)(x- 1)

<=> x3 + 1 - 2x = x3 - x

<=> x3 - 2x - x3 + x = -1

<=> -x = -1

<=> x = 1

Vậy S = {1}

1 tháng 4 2020

a) (x - 2)3 + (3x - 1)(3x + 1) = (x + 1)3

<=> x3 - 6x2 + 12x - 8 + 9x2 - 1 = x3 + 3x2 + 3x + 1

<=> x3 + 3x2 + 12x - x3 - 3x2 - 3x = 1 + 9

<=> 9x = 10

<=> x = 10/9

vậy S = {10/9}

b) (x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)

 <=> x3 - 3x2 + 3x  - 1 - x3 - 2x2 - x = 10x - 5x2 - 11x - 22

<=> -5x2 + 2x - 10x + 5x2 + 11x = -22 + 1

<=> 3x = -21

<=> x = -7

Vậy S = {-7}

c) (x + 1)(2x - 3) = (2x - 1)(x + 5)

<=> 2x2 - x - 3 = 2x2 + 9x - 5

<=> 2x2 -x - 2x2 - 9x = -5 + 3

<=>-10x = -2

<=> x = 1/5 Vậy S = {1/5}

1 tháng 4 2020

d) (x - 1) - (2x - 1) = 9 - x

<=> x - 1 - 2x + 1 = 9 - x

<=> -x + x = 9

<=> 0x = 9 (vô nghiệm)

=> pt vô nghiệm

e) (x - 3)(x + 4) - 2(3x - 2) = (x - 4)2

<=> x2 + x - 12 - 6x + 4 = x2 - 8x + 16

<=> x2 - 5x - x2 + 8x = 16 + 8

<=> 3x = 24

<=> x = 8

Vậy S = {8}

g) (x + 1)(x2 - x + 1) - 2x = x(x + 1)(x - 1)

<=> x3 + 1 - 2x = x3 - x

<=> x3 - 2x - x3 + x = -1

<=> -x = -1 <=> x = 1

Vậy S = {1}

14 tháng 4 2018

a)5(x-6)=4(3 -2x)

   5x-30=12-8x

  5x -8x=30+12

       -3x=42

          x=42 : (-3)

          x=-14

27 tháng 5 2018

a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0

1) x - 3 = 0 ⇔ x = 3

2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5

Vậy tập nghiệm của phương trình là S = {3;-2,5}

b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0

⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0

1) x - 2 = 0 ⇔ x = 2

2) -x + 5 = 0 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {2;5}

c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là x = 1

d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0

                                     ⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0

1) x - 2 = 0 ⇔ x = 2

2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72

Vậy tập nghiệm của phương trình là S = {2;72}

e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0

1) x - 7 = 0 ⇔ x = 7

2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1

Vậy tập nghiệm phương trình là: S= { 7; 1}

f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0 

⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0 

⇔ x = 3 hoặc x = 1

Vậy tập nghiệm của phương trình là S = {1;3}

5 tháng 2 2022

e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)

\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)

\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)

\(\Leftrightarrow x=-1\left(TM\right)\)

9 tháng 5 2021

a,\(2x+5=2-x\)

\(< =>2x+x+5-2=0\)

\(< =>3x+3=0\)

\(< =>x=-1\)

b, \(/x-7/=2x+3\)

Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)

\(< =>2x-x+3+7=0\)

\(< =>x+10=0< =>x=-10\)( lọai )

Với \(x< 7\)thì \(PT< =>7-x=2x+3\)

\(< =>2x+x+3-7=0\)

\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )

9 tháng 5 2021

c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)

\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(< =>4x^2-8x+4x-6=x^2-x-6\)

\(< =>4x^2-x^2-4x+x-6+6=0\)

\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)

a, \(\frac{1+2x-5}{6}=\frac{3-x}{4}\)

\(\frac{4+8x-20}{24}=\frac{18-6x}{24}\)

\(-16-8x=18-6x\)

\(-16-8x-18+6x=0\)

\(-34-2x=0\)

\(2x=-34\Leftrightarrow x=-17\)

b, \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)ĐKXĐ : x \(\ne\)-1 ; 0 

\(\frac{x^2+3x}{x^2+x}+\frac{x^2-x-2}{x^2+x}=\frac{2x^2+2x}{x^2+x}\)

\(x^2+3x+x^2-x-2=2x^2+2x\)

\(2x^2+2x-2=2x^2+2x\)

\(2x^2+2x-2x^2-2x-2=0\)

\(-2\ne0\) Nên phuwong trình vô nghiệm. (xem lại hộ)

26 tháng 1 2017

 a. 5-(x-6)=4(3-2x)

<=>5-x+6 = 12-8x

<=>-x+8x =-5-6+12

<=>7x=1

<=>x=\(\frac{1}{7}\)

Vậy phương trình có nghiệm là S= ( \(\frac{1}{7}\))

c.7 -(2x+4) =-(x+4)

<=> 7-2x-4=-x-4

<=>-2x+x= -7+4-4

<=> -x = -7

<=> x=7

Vậy phương trình có nghiệm là S=(7)