K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

Áp dụng hệ thức lượng trong tam giác vuông ABC : 

\(AB^2=HB\cdot BC\)

\(\Leftrightarrow AB^2=HB\cdot\left(HB+HC\right)\)

\(\Leftrightarrow3^2=HB^2+3.2HB\)

\(\Leftrightarrow HB^2+3.2HB-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}HB=1.8\left(N\right)\\HB=-5\left(L\right)\end{matrix}\right.\)

NV
12 tháng 7 2021

Ta có: \(BH+HC=BC\Rightarrow BC=BH+3,2\)

Áp dụng hệ thức lượng:

\(AB^2=BH.BC\)

\(\Leftrightarrow3^2=BH.\left(BH+3,2\right)\)

\(\Leftrightarrow BH^2+3,2BH-9=0\) (bấm máy phương trình bậc 2: \(x^2+3,2x-9=0\))

\(\Rightarrow\left[{}\begin{matrix}BH=-5< 0\left(loại\right)\\BH=1,8\end{matrix}\right.\)

Vậy \(BH=1,8\left(cm\right)\)

2 tháng 9 2018

\(\sqrt{\left(2-\sqrt{3}\right)\left(\sqrt{6+\sqrt{2}}\right)}=2\)

=2.

13 tháng 5 2016

mk bấm máy ra

x\(\approx\)0,146

13 tháng 5 2016

"Hình như" ở 2 mẫu phải cùng là số 2 hoặc -2 vì theo đó, phương trình sẽ có dạng giải được. Mình sửa lại đề theo hướng đó!

\(x=0\) không phải là nghiệm của pt

Xét \(x\ne0\), chia cả tử và mẫu 2 phân số đầu cho x, ta được:

\(pt\Leftrightarrow\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)

Đặt \(t=3x+\frac{2}{x}\)

\(pt\rightarrow\frac{2}{t-1}-\frac{7}{t+5}=1\Leftrightarrow t\in\left\{-11;2\right\}\)

Thay lại giải ra x.

16 tháng 12 2018

Câu này dc ko

Hai triệu to lắm nghĩa là gì

FTMD đọc ra tiếng anh thế nào

2 tháng 7 2017

Ta có : \(4,5.\sqrt{\dfrac{8}{3}}=\dfrac{9}{2}.\sqrt{\dfrac{8}{3}}=\sqrt{\left(\dfrac{9}{2}\right)^2}.\sqrt{\dfrac{8}{3}}=\sqrt{\dfrac{81}{4}.\dfrac{8}{3}}=\sqrt{54}\)

25 tháng 5 2017

Đặt ẩn phụ ^_^

21 tháng 6 2018

cảm ơn

21 tháng 10 2021

\(a,=\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)}{1+\sqrt{2}}=\sqrt{2}\\ b,=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{5}\\ c,=\dfrac{\sqrt{3}\left(1-\sqrt{2}\right)}{2\left(\sqrt{2}-1\right)}=-\dfrac{\sqrt{3}}{2}\\ d,=\dfrac{\sqrt{5}\left(1-\sqrt{2}\right)}{\sqrt{3}\left(1-\sqrt{2}\right)}=\dfrac{\sqrt{5}}{\sqrt{3}}=\dfrac{\sqrt{15}}{3}\\ e,=\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}+1}=\sqrt{7}\\ f,=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}=\sqrt{5}\\ g,=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}=\sqrt{2}\\ h,=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{5}\)