K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

mk bấm máy ra

x\(\approx\)0,146

13 tháng 5 2016

"Hình như" ở 2 mẫu phải cùng là số 2 hoặc -2 vì theo đó, phương trình sẽ có dạng giải được. Mình sửa lại đề theo hướng đó!

\(x=0\) không phải là nghiệm của pt

Xét \(x\ne0\), chia cả tử và mẫu 2 phân số đầu cho x, ta được:

\(pt\Leftrightarrow\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)

Đặt \(t=3x+\frac{2}{x}\)

\(pt\rightarrow\frac{2}{t-1}-\frac{7}{t+5}=1\Leftrightarrow t\in\left\{-11;2\right\}\)

Thay lại giải ra x.

28 tháng 2 2016

nhân 2 ;^2 rùi rút gọn = máy ; ptnt = máy;=>x=1;3

18 tháng 5 2016

a3-b3 = (a-b)(a2-ab+b2) , áp dung hằng đẳng thức rồi phân tích nha bạn 

2 tháng 9 2018

\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)

Xét x=0 không phải là nghiệm của pt, ta chia cả tử và mẫu của các phân thức ở VT của pt cho x:

\(\Rightarrow\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)

Đặt \(3x+\frac{2}{x}+2=t\). Khi đó pt mang dạng:

\(\frac{2}{t-3}-\frac{7}{t+3}=1\Leftrightarrow\frac{2t+6-7t+21}{t^2-9}=1\Leftrightarrow27-5t=t^2-9\)

\(\Leftrightarrow t^2+5t-36=0\Leftrightarrow t^2-4t+9t-36=0\)

\(\Leftrightarrow t\left(t-4\right)+9\left(t-4\right)=0\Leftrightarrow\left(t-4\right)\left(t+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=4\\t=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+\frac{2}{x}=2\\3x+\frac{2}{x}=-11\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x^2-2x+2=0\\3x^2+11x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2.x.\frac{1}{3}+\frac{1}{9}=-\frac{5}{9}\left(l\right)\\x^2+2.x.\frac{11}{6}+\frac{121}{36}=\frac{97}{36}\end{cases}\Rightarrow}\left(x+\frac{11}{6}\right)^2=\frac{97}{36}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{97}-11}{6}\\x=\frac{-\sqrt{97}-11}{6}\end{cases}}\). Vậy tập nghiệm của pt là \(S=\left\{\frac{\sqrt{97}-11}{6};\frac{-\sqrt{97}-11}{6}\right\}.\)

ĐK \(x\ne0\)

Chia cả 2 vế cho \(\frac{1}{x}\)ta được

\(\frac{3}{3x-4+\frac{1}{x}}+\frac{13}{3x+2+\frac{1}{x}}=6\)

Đặt \(3x+\frac{1}{x}=y\)

\(\Rightarrow\frac{3}{y-4}+\frac{13}{y+2}=6\)

\(\Leftrightarrow16y-46=6\left(y-4\right)\left(y+2\right)\)

Đến đây tự giải nhé (Phá ngoặc rồi ghép cặp lại)

19 tháng 9 2016

\(3x^4+4x^3-3x^2-2x+1=0\)

\(\Leftrightarrow3x^4+x^3-x^2+3x^3+x^2-x-3x^2-x+1=0\)

\(\Leftrightarrow x^2\left(3x^2+x-1\right)+x\left(3x^2+x-1\right)-\left(3x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x^2+x-1\right)\left(3x^2+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x-1=0\left(1\right)\\3x^2+x-1=0\left(2\right)\end{cases}}\)

  • \(\Delta_{\left(1\right)}=1^2-\left(-4\left(1.1\right)\right)=5\)

\(\Leftrightarrow x_{1,2}=\frac{-1\pm\sqrt{5}}{2}\left(tm\right)\)

  • \(\Delta_{\left(2\right)}=1^2-\left(-4\left(3.1\right)\right)=13\)

\(x_{1,2}=\frac{-1\pm\sqrt{13}}{6}\left(tm\right)\)

28 tháng 3 2022

1) Hình như đề bị sai rồi bạn.

Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)

Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)

Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)

Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:

\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)

2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)

pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)

\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)

\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)

Nhận thấy \(\Delta'=6^2-3.5=21>0\)

Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)

26 tháng 9 2016

\(2x+\left|x-\frac{1}{2}\right|=2\)

26 tháng 9 2016

Điều kiện x \(\ge\frac{1}{4}\)

Đặt a = \(\sqrt{x-\frac{1}{4}}\)(a \(\ge0\))

=> x = a2 + \(\frac{1}{4}\)

=> PT <=> 2a2 + \(\frac{1}{2}\)\(\sqrt{a^2+\frac{1}{4}+a}\)= 2

<=> \(\sqrt{a^2+\frac{1}{4}+a}\)\(\frac{3}{2}-2a\)

<=> a2 + 0,25 + a = 4a4 + 2,25 - 6a2

<=> 4a4 - 7a2 - a + 2 = 0

<=> (a + 1)(2a - 1)(2a2 - a - 2) = 0

<=> a = 0,5

<=> x = 0,5

21 tháng 9 2019

a) \(\frac{2x}{x+2}+\frac{x+2}{2x}=2\)

\(\Leftrightarrow4x^2+\left(x+2\right)^2=4x\left(x+2\right)\)

\(\Leftrightarrow5x^2+4x+4=4x^2+8x\)

\(\Leftrightarrow5x^2+4x+4-4x^2-8x=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow x^2-2.x.2+2^2=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Rightarrow x=2\)