Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8:
a: Ta có: \(E=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{x^2-1}\right)\)
\(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{4x}{x^2+2x+1}\)
b: Thay x=3 vào E, ta được:
\(E=\dfrac{4\cdot3}{\left(3+1\right)^2}=\dfrac{12}{4^2}=\dfrac{3}{4}\)
Thay x=-3 vào E, ta được:
\(E=\dfrac{4\cdot\left(-3\right)}{\left(-3+1\right)^2}=\dfrac{-12}{4}=-3\)
\(P=\left[\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right]:\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\) (đk:\(a\ge0;a\ne1\))
\(=\left[\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]:\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{\sqrt{a}-1}\right).\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{2\sqrt{a}}\)
\(=\dfrac{1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{2\sqrt{a}}=\dfrac{\sqrt{a}+1}{2\sqrt{a}}\)
2) \(\dfrac{1}{P}\ge\dfrac{\sqrt{a}+9}{8}\)
\(\Leftrightarrow\dfrac{2\sqrt{a}}{\sqrt{a}+1}\ge\dfrac{\sqrt{a}+9}{8}\)
\(\Leftrightarrow16\sqrt{a}\ge\left(\sqrt{a}+9\right)\left(\sqrt{a}+1\right)\)
\(\Leftrightarrow a-6\sqrt{a}+9\le0\)
\(\Leftrightarrow\left(\sqrt{a}-3\right)^2\le0\)
Dấu "=" xảy ra khi \(\sqrt{a}-3=0\Leftrightarrow a=9\) (tm)
Vậy...
1) ĐKXĐ: \(a\ge0;a\ne1\)
\(P=\left[\dfrac{a+\sqrt{a}+2\sqrt{a}+2}{\left(\sqrt{a}+2\right).\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}.\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}\right]\)\(:\left[\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}\right]\)
\(\Leftrightarrow P=\left[\dfrac{\sqrt{a}.\left(\sqrt{a}+1\right)+2.\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+2\right).\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}}{\sqrt{a}-1}\right]\)\(:\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}\)
\(\Leftrightarrow P=\left[\dfrac{\left(\sqrt{a}+2\right).\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+2\right).\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}}{\sqrt{a}-1}\right].\dfrac{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}{2\sqrt{a}}\)
\(\Leftrightarrow P=\dfrac{\sqrt{a}+1-\sqrt{a}}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}{2\sqrt{a}}\)
\(\Leftrightarrow P=\dfrac{\sqrt{a}+1}{2\sqrt{a}}\)
2) Có : \(\dfrac{1}{P}\ge\dfrac{\sqrt{a}+9}{8}\)
\(\Leftrightarrow\dfrac{2\sqrt{a}}{\sqrt{a}+1}\ge\dfrac{\sqrt{a}+9}{8}\)
\(\Leftrightarrow\dfrac{2\sqrt{a}}{\sqrt{a}+1}-\dfrac{\sqrt{a}+9}{8}\ge0\)
\(\Leftrightarrow\dfrac{16\sqrt{a}-\left(\sqrt{a}+9\right).\left(\sqrt{a}+1\right)}{8.\left(\sqrt{a}+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{16\sqrt{a}-a-10\sqrt{a}-9}{8.\left(\sqrt{a}+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{-\left(a-6\sqrt{a}+9\right)}{8.\left(\sqrt{a}+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{a}-3\right)^2}{8.\left(\sqrt{a}+1\right)}\le0\)
Vì \(\sqrt{a}\ge0\Rightarrow8.\left(\sqrt{a}+1\right)>0\) mà \(\left(\sqrt{a}-3\right)^2\) \(\ge0\)
\(\Rightarrow\) \(\dfrac{\left(\sqrt{a}-3\right)^2}{8.\left(\sqrt{a}+1\right)}=0\) \(\Rightarrow\left(\sqrt{a}-3\right)^2=0\) \(\Leftrightarrow\sqrt{a}-3=0\Leftrightarrow\sqrt{a}=3\Leftrightarrow a=9\)
Vậy để\(\dfrac{1}{P}\ge\dfrac{\sqrt{a}+9}{8}\) thì \(a=9\)
d: \(\dfrac{-\left(\sqrt{3}-\sqrt{6}\right)}{1-\sqrt{2}}+\dfrac{6\sqrt{3}+3}{\sqrt{3}}-\dfrac{13}{4+\sqrt{3}}\)
\(=-\sqrt{3}+6+\sqrt{3}-4+\sqrt{3}\)
\(=2+\sqrt{3}\)
1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:
\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)
Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)
2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)
\(A=\left(\sqrt{2}-8\sqrt{32}+2\sqrt{450}\right):\left(-3\sqrt{8}\right)\)
\(=\left(\sqrt{2}-32\sqrt{2}+30\sqrt{2}\right):\left(-6\sqrt{2}\right)\)
\(=\sqrt{2}\left[\left(1-32+30\right):\left(-6\right)\right]\)
\(=\sqrt{2}\left[\left(-1\right):\left(-6\right)\right]\)
\(=\sqrt{2}.\dfrac{1}{6}\)
\(=\dfrac{\sqrt{2}}{6}\)
a) Ta có: \(B=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\)
\(=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
b) Để B=16 thì \(4\sqrt{x+1}=16\)
\(\Leftrightarrow x+1=16\)
hay x=15
2\(\sqrt{\dfrac{16}{3}}\) - 3\(\sqrt{\dfrac{1}{27}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{3}{3\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{1}{\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{16}{2\sqrt{3}}\) - \(\dfrac{2}{2\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{11}{2\sqrt{3}}\)
= \(\dfrac{11\sqrt{3}}{6}\)
f, 2\(\sqrt{\dfrac{1}{2}}\)- \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{2}{\sqrt{2}}\) - \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{5\sqrt{2}}{4}\)
(1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1- \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))
= \(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3+\sqrt{3}}{\sqrt{3}+1}\)
= \(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)
= \(\dfrac{-4}{3-1}\)
= \(\dfrac{-4}{2}\)
= -2
ĐKXĐ: x>0; x ≠ 1
P = \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right)\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
= \(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{x-1}.\dfrac{x-1}{\sqrt{x}}\)
= \(\dfrac{4x\sqrt{x}}{\sqrt{x}}\)= 4x
Vậy P = 4x với x > 0; x ≠ 1