Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{0,64.a^2}\left(a>0\right)=0,8.\left|a\right|=0,8a\)
b) \(\sqrt{a^2\left(a-2\right)^2}\left(a>2\right)=\left|a\left(a-2\right)\right|=a\left(a-2\right)=a^2-2a\)
c) \(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}\left(a\ge0,a\ne1\right)=\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}=1+\sqrt{a}+a\)
\(M=\left(\dfrac{\sqrt{x}}{2x}-\dfrac{1}{\sqrt{x}}\right)\cdot\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\\ =\left(\dfrac{\sqrt{x}}{2x}-\dfrac{2\sqrt{x}}{2x}\right)\cdot\left(\dfrac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\\ =\dfrac{x-2\sqrt{x}}{2x}\cdot\dfrac{x-2\sqrt{x}+1-\left(x+2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{2x}\cdot\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{2x}\cdot\dfrac{-4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2\left(\sqrt{x}-2\right)}{x-1}\)
Câu 1:
a. \(\sqrt{x+2}\) có nghĩa khi \(x+2\ge0\Leftrightarrow x\ge-2\)
Vậy biểu thức \(\sqrt{x+2}\) có nghĩa khi \(x\ge-2\)
b. \(\left\{{}\begin{matrix}2x+y=5\\x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+4y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=3\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất (x; y) = (2; 1)
c. \(A=\left(\dfrac{3}{x-3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right).\dfrac{x-9}{\sqrt{x}}\left(x>0;x\ne9\right)\)
\(=\left[\dfrac{3\left(\sqrt{x}+3\right)}{\sqrt{x}\left(x-9\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}\left(x-9\right)}\right].\dfrac{x-9}{\sqrt{x}}\)
\(=\dfrac{3\sqrt{x}+9+x-3\sqrt{x}}{\sqrt{x}\left(x-9\right)}.\dfrac{x-9}{\sqrt{x}}\)
\(=\dfrac{x+9}{\sqrt{x}\left(x-9\right)}.\dfrac{x-9}{\sqrt{x}}\)
\(=\dfrac{x+9}{x}\)
a) Ta có: \(B=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\)
\(=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
b) Để B=16 thì \(4\sqrt{x+1}=16\)
\(\Leftrightarrow x+1=16\)
hay x=15
Sửa đề: \(B=\sqrt{a-1+2\sqrt{a-1}+1}+\sqrt{a-1-2\sqrt{a-1}+1}\)
\(=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)
\(=\left|\sqrt{a-1}+1\right|+\left|\sqrt{a-1}-1\right|\)
\(=\sqrt{a-1}+1+1-\sqrt{a-1}=2\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề hơn.
2\(\sqrt{\dfrac{16}{3}}\) - 3\(\sqrt{\dfrac{1}{27}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{3}{3\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{1}{\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{16}{2\sqrt{3}}\) - \(\dfrac{2}{2\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{11}{2\sqrt{3}}\)
= \(\dfrac{11\sqrt{3}}{6}\)
f, 2\(\sqrt{\dfrac{1}{2}}\)- \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{2}{\sqrt{2}}\) - \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{5\sqrt{2}}{4}\)
(1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1- \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))
= \(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3+\sqrt{3}}{\sqrt{3}+1}\)
= \(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)
= \(\dfrac{-4}{3-1}\)
= \(\dfrac{-4}{2}\)
= -2
d: \(\dfrac{-\left(\sqrt{3}-\sqrt{6}\right)}{1-\sqrt{2}}+\dfrac{6\sqrt{3}+3}{\sqrt{3}}-\dfrac{13}{4+\sqrt{3}}\)
\(=-\sqrt{3}+6+\sqrt{3}-4+\sqrt{3}\)
\(=2+\sqrt{3}\)