Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)
\(\Leftrightarrow x-y=10y-10z\)
\(\Leftrightarrow x=11y-10z\)
Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:
\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)
Chá quá, có ghi nhìn không rõ đề
2) \(2x^2=9x-4\)
\(\Leftrightarrow2x^2-9x+4=0\)
\(\Leftrightarrow2x^2-8x-x+4=0\)
\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow2x-1=0\) hoặc x-4=0
1) 2x-1=0<=>x=1/2
2)x-4=0<=>x=4(Loại)
=> x=1/2
Xét tứ giác ABEC có
AB//EC
AC//BE
Do đó: ABEC là hình bình hành
Suy ra: AC=BE
mà AC=BD
nên BE=BD
hay ΔBED cân tại B
\(\left(x+a\right)\left(x+8\right)=x^2+bx+24\)
\(\Leftrightarrow x^2+ax+8x+8a=x^2+bx+24\)
\(\Leftrightarrow x^2+\left(8+a\right)x+8a=x^2+bx+24\)
=> 8a=24=>a=3
(8+a)=b Thay a=3=>b=11
=> a+b=3+11=14
Theo bài ra , ta có :
y = xk
z = xk2
=) xyz = x.xk.xk2
=) xyz = x3k3
=) xyz = (xk)3
mà tích của ba số là 46656
=) (xk)3 = 46656
=) xk = \(\sqrt[3]{46656}=36\)
=) y = 36 ( Vì y = xk )
=) x + z = 114 - y
=) x + z = 114 - xk hay 114 - 36
=) x + z = 78
Vậy x + z = 78
Chúc bạn học tốt =))
636405=3.5.7.11.19.29=87.95.77
Vậy 636405 được viết bởi tích của 3 số nguyên dương 87,95,77
Tổng 3 số là: 87+95+77=259
Bài 2 :
a ) \(25-20x+4x^2=0\)
\(\Leftrightarrow\left(5-2x\right)^2=0\)
\(\Leftrightarrow5-2x=0\Rightarrow x=\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
a,\(\left(-2x^2+3x\right)\left(x^2-x+3\right)\\ \Leftrightarrow-2x^4+2x^3-6x^2+3x^3-3x^2+9x\\ \Leftrightarrow-2x^4+5x^3-3x^2+3x\)
\(b,x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9+6\right)+6\left(x+1\right)^2=15\\ \Leftrightarrow x\left(x^2-4\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=15\\ \Leftrightarrow x^3-4x-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow6x^2+8x+18=0\\ \Leftrightarrow6\left(x^2+\dfrac{4}{3}x+3\right)=0\\ \Leftrightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}=0\)
Với mọi x thì \(\left(x+\dfrac{2}{3}\right)^2\ge0\Rightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}>0\)
Do đó ko tìm đc giá trị nào của x thỏa mãn đề bài
Vậy..
Bài 2:
5) \(3\left(2^2+1\right)\left(2^4+1\right)+1\)
\(=3\left(4+1\right)\left(16+1\right)+1\)
\(=3\cdot5\cdot7+1\)
\(=255+1\)
\(=256\)
6) \(45^2+80\cdot45+40^2-15^2\)
\(=45^2+3600+40^2-15^2\)
\(=\left(45-15\right)\left(45+15\right)+3600+1600\)
\(=30\cdot60+3600+1600\)
\(=1800+3600+1600\)
\(=7000\)
Bài 3:
c) \(5\left(3-2x\right)^2-3\left(3x+1\right)\left(3x-1\right)+7x^2-48\)
\(=5\left(9-12x+4x^2\right)-3\left(9x^2-1\right)+7x^2-48\)
\(=45-60x+20x^2-27x^2+3+7x^2-48\)
\(=-60x\)
d) \(\left(x^2+4\right)\left(x+2\right)\left(x-2\right)-\left(x^2-3\right)^2\)
\(=\left(x^2+4\right)\left(x^2-4\right)-\left(3x^2\right)^2\)
\(=x^4-16-9x^4\)
\(=-8x^4-16\)
Bài 1 ,
\(a,9x^2-6x+1=\left(3x-1\right)^2\)
\(b,x^2+y^2-2x+4y+5=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=\left(x-1\right)^2+\left(y+2\right)^2\) \(c,2x^2+y^2+4x-2y+3=2\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=2\left(x+1\right)^2+\left(y-1\right)^2\) \(d,2x^2+y^2-6x+2xy+9=\left(x^2-6x+9\right)+\left(x^2+2xy+y^2\right)=\left(x-3\right)^2+\left(x+y\right)^2\)
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}