Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x+y+xy=-1\left(1\right)\\x^2+y^2-xy=7\end{matrix}\right.\)\(\Rightarrow x^2+y^2+x+y=6\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+x+y=6\)
\(\Leftrightarrow xy=\frac{\left(x+y\right)^2+x+y-6}{2}\)
Thay vào (1):\(2x+2y+\left(x+y\right)^2+x+y-6=-2\)
\(\Rightarrow\left[{}\begin{matrix}x+y=1\\x+y=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}xy=-2\\xy=3\end{matrix}\right.\)
Vậy x,y là nghiệm của pt:\(\left[{}\begin{matrix}X^2-X-2=0\\X^2+4X+3=0\end{matrix}\right.\)
Đến đây tự tìm x,y.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=10\\xy\left(x+y\right)+5\left(x+y\right)=32\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u^2-2v=10\\uv+5u=32\end{matrix}\right.\)
\(\Rightarrow u\left(\dfrac{u^2-10}{2}\right)+5u=32\)
\(\Leftrightarrow u^3=64\Rightarrow u=4\Rightarrow v=3\)
\(\Rightarrow\left(x;y\right)=\left(1;3\right);\left(3;1\right)\)
\(\hept{\begin{cases}x^2+xy+x=1\left(1\right)\\y^2+xy+x+y=1\left(2\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(x+y+1\right)=1\\y\left(x+y+1\right)+x=1\end{cases}}\)
\(\Leftrightarrow y=x-x^2\).Thay vào (1) ta được pt
\(-x^3+2x^2+x-1=0\)
.....
1.
HPT \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)
Vậy.............
2.
ĐKXĐ: $x\in\mathbb{R}$
$x^2+x-2\sqrt{x^2+x+1}+2=0$
$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$
$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$
$\Rightarrow \sqrt{x^2+x+1}=1$
$\Rightarrow x^2+x=0$
$\Leftrightarrow x(x+1)=0$
$\Rightarrow x=0$ hoặc $x=-1$
\(\left\{{}\begin{matrix}xy=120\\xy=\left(x+10\right)\left(y-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=120\\xy=xy-x+10y-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=120\\x=10y-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(10y-10\right)y=120\\x=10y-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^2-y-12=0\\x=10y-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=4\Rightarrow x=30\\y=-3\Rightarrow x=-40\end{matrix}\right.\)