K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2016

Điều kiện x, y dương. Hệ phương trình tương đương với hệ :

\(\begin{cases}\log_2\left(x+3\right)=2\left(1+\log_3y\right)\\2\left(1+\log_3x\right)=\log_2\left(y+3\right)\end{cases}\) (*)

Cộng vế với vế 2 phương trình của hệ (*) ta có :

\(\log_2\left(x+3\right)+2\log_3x=\log_2\left(y+3\right)+2\log_3y\)

Xét hàm số :

\(f\left(t\right)=\log_2\left(t+3\right)+2\log_3t\) trên miền \(\left(0;+\infty\right)\).

Dễ thấy hàm số luôn đồng biến trên  \(\left(0;+\infty\right)\)., mà \(f\left(x\right)=f\left(y\right)\) nên \(x=y\).

Thay vào một trong hai phương trình của hệ (*), ta được 

\(\log_2\left(x+3\right)=2\left(1+\log_3x\right)\)

 

hay

\(x+3=2^{2\left(1+\log_3x\right)}=4.2^{\log_3x^2}=4.2^{\log_32.\log_2x^2}=4\left(2^{\log_2x^2}\right)^{\log_32}\)

\(\Leftrightarrow x+3=4.x\log^{\log_34}\)

\(\Leftrightarrow x^{1-\log_34}+3.x^{-\log_34}=4\) (**)

Xét 

\(g\left(x\right)=x^{1-\log_34}+3.x^{-\log_34}\) trên khoảng( \(0:+\infty\)), ta có :

\(g'\left(x\right)=\left(1-\log_34\right)x^{-\log_34}-3.\log_34x^{-1-\log_34}\)

Thấy ngay \(g'\left(x\right)<0\) với mọi \(x\in\left(0;+\infty\right)\), do đó \(g\left(x\right)\)nghịch biến trên \(\left(0;+\infty\right)\)

Mặt khác \(g\left(1\right)=4\) vậy x=1 là nghiệm duy nhất của phương trình (**)

Hệ phương trình đã cho có nghiệm duy nhất là (1;1)

21 tháng 4 2021

trong cac phan so sau :2/3 ;2/8 ;17/300 ;1/30.phan so thap phan la phan so 

30 tháng 3 2016

Điều kiện  \(x>0.y>0,y\ne1\) 

Với điều kiện này thì phương trình thứ nhất tương đương với \(x=y^2\)

Thế vào phương trình thứ 2 ta được :

 \(\log_2y=\log_yy^2\Leftrightarrow y=4\)

Suy ra x=16.

Vậy hệ có nghiệm duy nhất là (16;4)

 

30 tháng 3 2016

\(\begin{cases}d\\hfghfghfghfgh\end{cases}\)

24 tháng 3 2016

Điều kiện x>1

Từ (1) ta có  \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3

Đặt \(t=\log_2\left(x^2-2x+5\right)\)

Tìm điều kiện của t :

- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)

- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)

Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3

- Ta có \(x^2-2x+5=2'\)

 \(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)

Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)

Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)

Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)

- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)

- Bảng biến thiên :

x2                                              \(\frac{5}{2}\)                                                    3
y'                  +                             0                       -
y

-6                                                                                                      -6

                                                -\(\frac{25}{4}\)

 

24 tháng 3 2016

Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6

NV
22 tháng 3 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x>3\\y>0\end{matrix}\right.\)

Biến đổi pt dưới:

\(\Leftrightarrow x^3-3x-y^3-6y^2-9y-2+ln\left(x-1\right)-ln\left(y+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^3+3\left(x-1\right)^2+ln\left(x-1\right)=\left(y+1\right)^3+3\left(y+1\right)^2+ln\left(y+1\right)\)

Xét hàm: \(f\left(t\right)=t^3+3t^2+lnt\) với \(t>0\)

\(f'\left(t\right)=3t^2+6t+\dfrac{1}{t}>0\) ;\(\forall t>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow x-1=y+1\Rightarrow x=y+2\)

Thế lên pt trên:

\(y\left(log_2\left(y-1\right)+log_3y\right)=y+3\)

\(\Leftrightarrow log_2\left(y-1\right)+log_3y=1+\dfrac{3}{y}\)

Nhận thấy \(y=3\) là 1 nghiệm

Hàm \(f\left(y\right)=log_2\left(y-1\right)+log_3y\) có \(f'\left(y\right)=\dfrac{1}{\left(y-1\right)ln2}+\dfrac{1}{y.ln3}>0\Rightarrow f\left(y\right)\) đồng biến

Hàm \(g\left(y\right)=1+\dfrac{3}{y}\) có \(g'\left(y\right)=-\dfrac{3}{y^2}< 0\Rightarrow g\left(y\right)\) nghịch biến

\(\Rightarrow f\left(y\right)=g\left(y\right)\) có tối đa 1 nghiệm

\(\Rightarrow y=3\) là nghiệm duy nhất

\(\Rightarrow\left(x;y\right)=\left(3;5\right)\) là cặp nghiệm duy nhất của hệ

30 tháng 3 2016

Điều kiện x, y dương

Đặt \(u=lgx,v=lgy,\left(u>0\right)\), ta có hệ :

\(\begin{cases}u+2v=3\\u^2-6v=1\end{cases}\) \(\Leftrightarrow\begin{cases}2v=3-u\\u^2+3u-10=0\end{cases}\)

                        \(\Leftrightarrow\begin{cases}u=2\\v=\frac{1}{2}\end{cases}\)

Từ đó tính ra được x=4, \(y=\sqrt{10}\)

30 tháng 3 2016

Điều kiện là x;y là các số nguyên dương

Đặt u=lgx và vlgy (u>0) , ta có hệ phương trình sau :
\(\begin{cases}u+2v=3\\u^2-6v=1\end{cases}\Leftrightarrow\begin{cases}2v=3-u\\u^2+3u-10=0\end{cases}\Leftrightarrow}\begin{cases}u=2\\v=\frac{1}{2}\end{cases}}\)

Từ đó ta thay u=2 và v=1/2 vào phương trình rồi tìm x;y

1 tháng 6 2016

cau a , xet phuong trinh 1 la 8(x+y) =x^2 +2y^2 + 3xy

ta co , 8(x+y) = x^2 +2xy+y^2 +y^2+xy

    8(x+y)= (x+y)^2+y(x+y)

 (x+y)((x+y)+y-8)=0  xét (x+y)=0 và (x+2y-8)=0 . xét từng trường hợp rồi thế vào phương trình 2 rồi tự giải lột nhe

1 tháng 6 2016

cau 2 de kho hieu the , viet lai xem nao sao 2 phong trinh ma bang mot bieu thuc thoi ak

30 tháng 3 2016

Điều kiện \(x,y>0,x\ne1,y\ne1\) Hệ tương đương với 

\(\begin{cases}\frac{1}{2}\log_y\left(xy\right)=\log_xy\\2^x+2^y=3\end{cases}\) \(\Leftrightarrow\begin{cases}\log_yx+1=\frac{2}{\log_yx}\\2^x+2^y=3\end{cases}\)

Giải phương trình thú nhất ẩn \(t=\log_yx\) ta thu được \(t=1;t=-2\)

Do đó x=y hoặc \(x=\frac{1}{y^2}\)

Với x=y thế vào phương trình 2 ta thu được \(x=\log_2\frac{3}{2}\)

Với \(x=\frac{1}{y^2}\), thế vào phương trình 2 ta được :

\(2^y+2^{\frac{1}{y^2}}=3\left(y>0,y\ne1\right)\)

Phương trình này vô nghiệm, thật vậy :

+ Nếu \(y>1\) thì \(2^y>2\) và \(2^{\frac{1}{y^2}}>2^o=1\) suy ra vế trái >2=VP

+ 0<y<1 thì \(2^y>1\)và \(2^{\frac{1}{y^2}}>2^1=2\) suy ra vế trái >2=VP

Vậy hệ phương trình có nghiệm duy nhất là \(\left(\log_2\frac{3}{2};\log_2\frac{3}{2}\right)\)