K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2016

Điều kiện \(x,y>0,x\ne1,y\ne1\) Hệ tương đương với 

\(\begin{cases}\frac{1}{2}\log_y\left(xy\right)=\log_xy\\2^x+2^y=3\end{cases}\) \(\Leftrightarrow\begin{cases}\log_yx+1=\frac{2}{\log_yx}\\2^x+2^y=3\end{cases}\)

Giải phương trình thú nhất ẩn \(t=\log_yx\) ta thu được \(t=1;t=-2\)

Do đó x=y hoặc \(x=\frac{1}{y^2}\)

Với x=y thế vào phương trình 2 ta thu được \(x=\log_2\frac{3}{2}\)

Với \(x=\frac{1}{y^2}\), thế vào phương trình 2 ta được :

\(2^y+2^{\frac{1}{y^2}}=3\left(y>0,y\ne1\right)\)

Phương trình này vô nghiệm, thật vậy :

+ Nếu \(y>1\) thì \(2^y>2\) và \(2^{\frac{1}{y^2}}>2^o=1\) suy ra vế trái >2=VP

+ 0<y<1 thì \(2^y>1\)và \(2^{\frac{1}{y^2}}>2^1=2\) suy ra vế trái >2=VP

Vậy hệ phương trình có nghiệm duy nhất là \(\left(\log_2\frac{3}{2};\log_2\frac{3}{2}\right)\)