K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

dễ nhưng mà tịt

21 tháng 6 2016

\(\hept{\begin{cases}2x-y=1\\3x+y=4\end{cases}}\Leftrightarrow x=y=1\)

11 tháng 7 2017

Giải hệ phương trình,(x + 2)(x - y + 1) = 2 và 3x^2 - 3xy + x + 2y = 4,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

AI XEM RỒI NHỚ CHẤM ĐIỂM

11 tháng 7 2017

Trình bày xấu chưa từng thấy

Câu 1: 

A: Hai phương trình này tương đương vì có chung tập nghiệm S={-3}

B: Hai phương trình này không tương đương vì hai phương trình này không có chung tập nghiệm

Câu 2: 

\(\left(y-2\right)^2=y+4\)

\(\Leftrightarrow y^2-4y+4-y-4=0\)

\(\Leftrightarrow y\left(y-5\right)=0\)

=>y=0 hoặc y=5

18 tháng 7 2018

1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)

\(2y=-4\Rightarrow y=-2\)

                    \(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )

2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>

\(x+3x-2=6\)

\(4x=8\Rightarrow x=2\)

               \(\Rightarrow y=6-2=4\)

3)  \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2

\(3x-5+x=3\)

\(4x=8\Rightarrow x=2\)

                \(2y=3\Rightarrow y=\frac{3}{2}\)

4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )

\(5+y+3y=1\)

\(4y=-4\Rightarrow y=-1\)

                   \(\Rightarrow2x=4\Rightarrow x=2\)

mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...

29 tháng 12 2019

\(\hept{\begin{cases}x^2=3x+2y\\y^2=3y+2x\end{cases}}\)

\(\Rightarrow x^2-y^2=3\left(x-y\right)-2\left(x-y\right)\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)=\left(x-y\right)\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)-\left(x-y\right)=0\)

\(\Rightarrow\left(x+y-1\right)\left(x-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y-1=0\\x-y=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+y=1\\x=y\end{cases}}\)

26 tháng 8 2020

\(x^4+2x^3+3x^2+2x=y^2-y\)

\(\Leftrightarrow x^4+x^2+1+2x^3+2x^2+2x=y^2-y+1\)

\(\Leftrightarrow\left(x^2+x+1\right)^2=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Leftrightarrow\left(x^2+x+1-y+\frac{1}{2}\right)\left(x^2+x+1+y-\frac{1}{2}\right)=\frac{3}{4}\)

\(\Leftrightarrow\left(x^2+x-y+\frac{3}{2}\right)\left(x^2+x+y+\frac{1}{2}\right)=\frac{3}{4}\)

\(\Leftrightarrow\left(2x^2+2x-2y+3\right)\left(2x^2+2x+2y+1\right)=3\)

Đến đây chắc khó.