Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(100^2-99^2+98^2-97^2+......+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+......+\left(2-1\right)\left(2+1\right)\)
\(=199+195+.....+3\)
Rồi bạn chỉ cần tính tổng những số này thôi
Mỗi số đều cách nhau 3 đơn vị
\(100^2-99^2+98^2-97^2+...+2^2-1^2\)\(1^2\)
\(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+....+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1\)
\(=\left(100+1\right).100:2\)
\(=5050\)
#)Giải :
B = 2100 - 299 + 298 - 297 + ... + 22 - 2
=>2B = 2101 - 2100 + 299 - 298 + ... + 23 - 22
=>2B + B = ( 2101 - 2100 + 299 - 298 + ... + 23 - 22 ) + ( 2100 - 299 + 298 - 297 + ... + 22 - 2 )
=>3B = 2201 - 2
=>B = 2201 - 2 / 3
\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(2B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow2B+B=2^{101}-2^2\)
\(\Rightarrow3B=2^{101}-2^2\)
\(\Rightarrow B=\frac{2^{101}-2^2}{3}\)
Ta có 1002 - 992 = (100 - 99)(100 + 99) = 199
982 - 972 = 195
Tương tự như vậy cái ban đầu sẽ bằng
199 + 195 + 191 +...+ 7 + 3
Dãy này bạn tính được chứ
\(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=199+195+191+....+3\)
\(=5050\)
Đặt biểu thức cần tính là A
Đặt B=1+22+32+42+...+1002=1+2(1+1)+3(2+1)+4(3+1)+...+100(99+1)
B=1+1.2+2+2.3+3+3.4+4+...+99.100+100=(1+2+3+4+...+100)+(1.2+2.3+3.4+...+99.100)
Đặt C=1.2+2.3+3.4+...+99.100 => 3.C=1.2.3+2.3.3+3.4.3+...+99.100.3=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3.C=1.2.3-1.2.3+2.3.4-2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=99.100.101 => C=33.100.101
Đặt \(D=1+2+3+4+...+100=\frac{100\left(1+100\right)}{2}=5050.\)
=> B=D+C=5050+33.100.101
A=(22+42+62++82+...+1002)-(1+32+52+72+...+992)
Đặt E=22+42+62+82+...+1002=22.(1+22+32+42+...+502)=22.[1+2.(1+1)+3(2+1)+4(3+1)+...+50(49+1)]
E=22.(1+1.2+2+2.3+3+3.4+4+...+49.50+50)=22.[(1+2+3+...+50)+(1.2+2.3+3.4+...+49.50] Tính tương tự như C và D
=> \(E=2^2.\left(\frac{50.\left(1+50\right)}{2}+\frac{49.50.51}{3}\right)=2^2.\left(1275+17.49.50\right)\)
Mặt khác ta có
B=(1+32+52+72+...+992)+(22+42+62+82+...+1002)=(1+32+52+72+...+992)+E => 1+32+52+72+...+992=B-E
=> A=E-(B-E)=2.E-B
\(\Rightarrow A=2^3\left(1275+17.49.50\right)-\left(5050+33.100.101\right)\)
1002-992+982-972+...+22-12
=(1002-992)+(982-972)+...+(22-12)
=(100+99)(100-99)+(98+97)(98-97)+...+(2+1)(2-1)
=199+195+...+3
=(199+3)+...+(99+103) (25 số )
=202+202+...+202
=202.25=5050
Bài 1 :
\(S=100^2-99^2+98^2-97^2+.....+2^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+....+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=1.\left(100+99\right)+1.\left(98+97\right)+...+1.\left(2+1\right)\)
\(=100+99+98+97+....+2+1\)
\(=\frac{100\left(100+1\right)}{2}=5050\)
Bài 2 :
\(x^2-4x+y^2-8y+6\)
\(=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\) có GTNN là - 14
Dấu "=" xảy ra <=> x = 2 ; y = 4
Vậy ...............
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
\(\left(100^2+98^2+...+2^2\right)-\left(99^2+97^2+...+1^2\right)\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+....+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+....+2+1=5050\)
=(100^2-99^2)+(98^2-97^2)...+(2^2-1^1)
=100+99+98+97+...+2+1(áp dụng hdt)
Tới đây tính tổng dãy có quy luật của lớp 5 thôi
Cảm ơn