K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2023

a: Sửa đề: A,B,M,O

Xét tứ giác BMOA có

\(\widehat{BMO}+\widehat{BAO}=90^0+90^0=180^0\)

=>BMOA là tứ giác nội tiếp

=>B,M,O,A cùng thuộc một đường tròn

b: Xét (O) có

BA,BM là tiếp tuyến

Do đó: BA=BM và OB là phân giác của \(\widehat{AOM}\)

=>\(\widehat{AOM}=2\cdot\widehat{AOB}\)

Xét (O) có

CA,CN là tiếp tuyến

Do đó: CA=CN và OC là phân giác của \(\widehat{AON}\)

=>\(\widehat{AON}=2\cdot\widehat{AOC}\)

\(\widehat{AON}+\widehat{AOM}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{AOC}+2\cdot\widehat{AOB}=180^0\)

=>\(2\cdot\widehat{BOC}=180^0\)

=>\(\widehat{BOC}=90^0\)

Xét ΔOBC vuông tại O có OA là đường cao

nên \(OA^2=AB\cdot AC\)

mà AB=BM và AC=CN

nên \(OA^2=BM\cdot CN\)

c: BA=BM

=>B nằm trên đường trung trực của AM(1)

OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra BO là đường trung trực của AM

=>BO\(\perp\)AM tại trung điểm của AM

=>BO\(\perp\)AM tại H và H là trung điểm của AM

CA=CN

=>C nằm trên đường trung trực của AN(3)

OA=ON

=>O nằm trên đường trung trực của AN(4)

Từ (3) và (4) suy ra CO là đường trung trực của AN

=>CO\(\perp\)AN tại trung điểm của AN

=>CO\(\perp\)AN tại K và K là trung điểm của AN

Xét tứ giác AHOK có \(\widehat{AHO}=\widehat{AKO}=\widehat{HOK}=90^0\)

nên AHOK là hình chữ nhật

 

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
20 tháng 11 2023

d) Áp dụng tính chất 2 tiếp tuyến cắt nhau trong đường tròn (O) và 2 tiếp tuyến tại M và N, ta có AO là tia phân giác của \(\widehat{MAN}\) (1)

 Lại có \(\widehat{AME}=\widehat{MNE}\) (do chúng là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp chắn cung đó)

 Hơn nữa, vì AO là trung trực của đoạn MN nên E thuộc trung trực của MN \(\Rightarrow EM=EN\) \(\Rightarrow\Delta EMN\) cân tại E \(\Rightarrow\widehat{ENM}=\widehat{EMN}\)

 Từ đó suy ra \(\widehat{AME}=\widehat{EMN}\) hay ME là tia phân giác của \(\widehat{AMN}\). (2)

 Từ (1) và (2) \(\Rightarrow\) đpcm.

e) Gọi C là giao điểm của PO và (AMN). Khi đó ta có  \(PB^2=PN.PM=PC.PO\) nên \(\Delta PBC~\Delta POB\left(c.g.c\right)\) \(\Rightarrow\widehat{PCB}=\widehat{PBO}=90^o\) \(\Rightarrow PC\perp BC\)

Mặt khác, do đường tròn (AMN) có đường kính là AO nên \(\widehat{ACO}=90^o\Rightarrow AC\perp PC\)

 Từ đó suy ra A, B, C thẳng hàng. Do đó \(\widehat{ABM}=\widehat{BPO}\) (vì cùng phụ với \(\widehat{POB}\))

a: Xét (O) có

EA,EC là tiếp tuyến

Do đó: EA=EC

=>E nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC tại trung điểm của AC

b: Xét tứ giác NCMA có

\(\widehat{CNA}=\widehat{CMA}=\widehat{MAN}=90^0\)

=>NCMA là hình chữ nhật

=>NM cắt CA tại trung điểm của mỗi đường

mà I là trung điểm của NM

nên I là trung điểm của CA

Ta có: OE vuông góc AC tại trung điểm của AC(cmt)

mà I là trung điểm của AC

nên OE\(\perp\)AC tại I

=>O,I,E thẳng hàng

c: Gọi giao điểm của CB với AN là F

Ta có: CM\(\perp\)AB

FA\(\perp\)AB

Do đó: CM//FA

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

=>AC\(\perp\)BC tại C

=>AC\(\perp\)FB tại C

=>ΔACF vuông tại C

Xét ΔEAC có EA=EC

nên ΔEAC cân tại E

=>\(\widehat{EAC}=\widehat{ECA}\)

Ta có: \(\widehat{EAC}+\widehat{EFC}=90^0\)(ΔACF vuông tại C)

\(\widehat{ECA}+\widehat{ECF}=\widehat{ACF}=90^0\)

mà \(\widehat{EAC}=\widehat{ECA}\)

nên \(\widehat{EFC}=\widehat{ECF}\)

=>EF=EC

mà EA=EC

nên EF=EA(3)

Xét ΔEAB có KM//AE

nên \(\dfrac{KM}{AE}=\dfrac{BK}{BE}\left(4\right)\)

Xét ΔBFE có CK//FE

nên \(\dfrac{CK}{FE}=\dfrac{BK}{BE}\left(5\right)\)

Từ (3),(4),(5) suy ra \(\dfrac{KM}{AE}=\dfrac{CK}{FE}\)

mà AE=FE

nên KM=CK

=>K là trung điểm của CM

26 tháng 11 2023

a: O là trung điểm của AB

=>\(OA=OB=\dfrac{AB}{2}=4,8\left(cm\right)\)

ΔOBD vuông tại B

=>\(OD^2=OB^2+BD^2\)

=>\(OD^2=4,8^2+6,4^2=64\)

=>OD=8(cm)

Xét ΔDON vuông tại O có OB là đường cao

nên \(OB^2=BN\cdot BD\)

=>\(BN\cdot6,4=4,8^2\)

=>BN=3,6(cm)

DN=DB+BN

=3,6+6,4

=10(cm)

Xét ΔODN vuông tại O có \(DN^2=OD^2+ON^2\)

=>\(ON^2+8^2=10^2\)

=>\(ON^2=36\)

=>ON=6(cm)

b: Xét (O) có

DM,DB là tiếp tuyến

Do đó; OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

\(\widehat{MOB}+\widehat{MOA}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOD}+\widehat{MOA}=2\cdot90^0\)

=>\(\widehat{MOA}=2\cdot90^0-2\cdot\widehat{MOD}=2\left(90^0-\widehat{MOD}\right)=2\cdot\widehat{COM}\)

=>OC là phân giác của góc MOA

Xét ΔCAO và ΔCMO có

OA=OM

\(\widehat{COA}=\widehat{COM}\)

OC chung

Do đó: ΔCAO=ΔCMO

=>\(\widehat{CAO}=\widehat{CMO}=90^0\)

=>AC\(\perp\)AB

mà BD\(\perp\)AB

nên BD//AC

Xét ΔOAC vuông tại A và ΔOBN vuông tại B có

OA=OB

\(\widehat{AOC}=\widehat{BON}\)

Do đó: ΔOAC=ΔOBN

=>OC=ON

=>O là trung điểm của CN

Xét ΔDCN có

DO là đường cao

DO là đường trung tuyến

Do đó;ΔDCN cân tại D

=>DC=DN

c: Vì \(\widehat{CAO}=90^0\) và OA là bán kính của (O)

nên CA là tiếp tuyến của (O)