K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOBD có OB=OD

nên ΔOBD cân tại O

b: Ta có: ΔOAC cân tại O

mà OM là đường phân giác

nên OM là đường cao

Ta có: ΔOBD cân tại O

mà ON là đường phân giác

nên ON là đường cao

c: Xét ΔOBD có OA/AB=OC/CD

nên AC//BD

17 tháng 2 2020

a, Ta có: OA + AB = OB

và OC + CD = OD

Mà OA = OC (gt) ; AB = CD (gt)

=> OB = OD 

=> △OBD cân tại O

b, Vì ON là tia phân giác của xOy => xON = NOy = xOy : 2 = 65o : 2 = 32,5o

Cách 1: Xét △OAM và △OCM 

Có: OA = OC (gt)

    AOM = COM (cmt)

   OM là cạnh chung

=> △OAM = △OCM (c.g.c)

=> AMO = CMO (2 góc tương ứng)

Mà AMO + CMO = 180o (2 góc kề bù)

=> AMO = CMO = 180o : 2 = 90o

Xét △BON và △DON

Có: OB = OD (cmt)

    BON = DON (cmt)

   ON là cạnh chung

=> △BON = △DON (c.g.c)

=> BNO = DNO (2 góc tương ứng)

Mà BNO + DNO = 180o (2 góc kề bù)

=> BNO = DNO = 180o : 2 = 90o     

Cách 2: Vì OA = OC (gt) => △AOC cân tại O => CAO = (180o - AOC) : 2 =  (180o​ - 65o) : 2 = 115o : 2 = 57,5o 

Xét △OAM có: MAO + AMO + MOA = 180o (tổng 3 góc trong tam giác)

=> 57,5o + AMO + 32,5o = 180o 

=> AMO = 180o - 32,5o - 57,5o 

=> AMO = 90o 

Vì △OBD cân tại O => DBO = (180o - BOD) : 2 =  (180o​ - 65o) : 2 = 115o : 2 = 57,5o 

Xét △BON có: NBO + BNO + BON = 180o (tổng 3 góc trong tam giác)

=> 57,5o + BNO + 32,5o = 180o 

=> BNO = 180o - 32,5o - 57,5o 

=> BNO = 90o 

c, Vì AMO = 90o => AM ⊥ ON hay AC ⊥ ON (M \in  AC)   (1)

Vì BNO = 90o => BN ⊥ ON hay BD ⊥ ON (N \in  BD)       (2)

=> Từ (1) và (2) => AC // BD (dhnb)

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

21 tháng 1 2021

x y O A C B D

a,Ta có:OC=OA;AB=CD

=>OC+CD=OA+AB

=>OD=OB =>\(\Delta OBD\)cân tại O

b,Vì \(\Delta OBD\)cân tại O

=> \(\widehat{OBD}=\frac{180^o-60^o}{2}=60^o\)

c,Do OA=OC => \(\Delta OAC\)cân tại O

                      => \(\widehat{OAC}=\frac{180^o-60^o}{2}=60^o\)

                      =>\(\widehat{OBD}=\widehat{OAC}\)

                      => AC//CD(do\(\widehat{OBD}\)\(\widehat{OAC}\) ở vị rí đồng vị)

18 tháng 3 2017

1.Tự vẽ hình ha!

Cm:

a) Xét \(\Delta OAD\)và \(\Delta OCB\)có:

OA=OC (gt)

OD=OB (gt)

\(\widehat{O}\)chung

=>\(\Delta OAD\)=\(\Delta OCB\)(c.g.c)

=>AD=BC (2 cạnh tương ứng) (Đpcm)

b) Vì\(\Delta OAD\)=\(\Delta OCB\)(cmt) => \(\widehat{ODA}=\widehat{OBC};\widehat{OAD}=\widehat{OCB}\)(2 góc t/ứ)

Ta có: \(\widehat{OAD}+\widehat{DAB}=180^0\)(2 góc kề bù)

\(\Rightarrow\widehat{DAB}=180^0-\widehat{OAD}\)

Lại có: \(\widehat{OCB}+\widehat{BCD}=180^0\)(2 góc kề bù)

\(\Rightarrow\widehat{BCD}=180^0-\widehat{OCB}\)

Mà \(\widehat{OAD}=\widehat{OCB}\)(cmt)

\(\Rightarrow\widehat{DAB}=\widehat{BCD}\)hay \(\widehat{IAB}=\widehat{ICD}\)

Ta có: OA=OC;OB=OD (GT)

=> OB-OA=OD-OC

=>AB=CD

Xét\(\Delta AIB\) và\(\Delta CID\)có:

AB=CD (cmt)

\(\widehat{IAB}=\widehat{ICD}\)(cmt)

\(\widehat{ODA}=\widehat{OBC}\)(cmt)

=>\(\Delta AIB\)=\(\Delta CID\)(g.c.g)

=>AI=IC; IB=ID (đpcm)

c) Xét \(\Delta OID\)\(\Delta OIB\)có:

OD=OB (gt)

ID=IB (cmt)

\(\widehat{ODA}=\widehat{OBC}\)(cmt)

=>\(\Delta OID\)=\(\Delta OIB\)(c.g.c)

=>\(\widehat{DOI}=\widehat{BOI}\)

=> OI là tia pg của góc xOy (đpcm)

12 tháng 11 2019

Giup mình với ạ 

14 tháng 3 2023

a) Ot là tia phân giác của góc bẹt xOy

nên ���^=���^=90� 

Xét ΔAOC và ΔDOB có OA=OD(gt)

���^=���^=90�(cnt)

OC=OB(gt)

Do đó ΔAOC và ΔDOB (c.g.c)⇒AC=BD

Ta có ΔAOC và ΔDOB (cmt) ⇒  �1^=�1^ và �1^=�1^(góc tương ứng)

Mà �1^+�1^=90� ( vì ���^=90� )⇒�1^+�1^=90� 

Gọi I là giao điểm của CA và BD . Xét ΔCID có �1^+�1^=90� 

���^=180�-(�1^+�1^)=90� 

b)M là trung điểm của AC (gt)⇒MC=MA=��2 tương tự ta có NB=ND=��2 mà AC=BD(cmt)⇒MC=MA=NB=ND

Xét ΔOMC và ΔONB có MC=NB(cmt)

�1^=�1^(cmt)

OC=OB(gt)

Do đó ΔOMC=ΔONB(c.g.c)⇒OM=ON

c) Ta có ΔOMC=ΔONB (cmt)⇒�1^=�3^ (góc tương ứng )

mà �1^+�2^=���^=90� (gt)⇒�2^+�3^=90�hay���^=90� 

Gọi H là trung điểm của đoạn MN . Xét ΔMHO và ΔNHO có OH : cạnh chung , MH=NH(gt);OM=ON(cmt). Do đó ΔMHO=ΔNHO(c.c.c)⇒���^=���^(góc tương ứng )

Xét ΔMON có ���^=90� (cmt)���^=���^

Mà ���^+���^180�-���^180�-90�=90� 

���^=���^=45� 

image