K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

a, Ta có: OA + AB = OB

và OC + CD = OD

Mà OA = OC (gt) ; AB = CD (gt)

=> OB = OD 

=> △OBD cân tại O

b, Vì ON là tia phân giác của xOy => xON = NOy = xOy : 2 = 65o : 2 = 32,5o

Cách 1: Xét △OAM và △OCM 

Có: OA = OC (gt)

    AOM = COM (cmt)

   OM là cạnh chung

=> △OAM = △OCM (c.g.c)

=> AMO = CMO (2 góc tương ứng)

Mà AMO + CMO = 180o (2 góc kề bù)

=> AMO = CMO = 180o : 2 = 90o

Xét △BON và △DON

Có: OB = OD (cmt)

    BON = DON (cmt)

   ON là cạnh chung

=> △BON = △DON (c.g.c)

=> BNO = DNO (2 góc tương ứng)

Mà BNO + DNO = 180o (2 góc kề bù)

=> BNO = DNO = 180o : 2 = 90o     

Cách 2: Vì OA = OC (gt) => △AOC cân tại O => CAO = (180o - AOC) : 2 =  (180o​ - 65o) : 2 = 115o : 2 = 57,5o 

Xét △OAM có: MAO + AMO + MOA = 180o (tổng 3 góc trong tam giác)

=> 57,5o + AMO + 32,5o = 180o 

=> AMO = 180o - 32,5o - 57,5o 

=> AMO = 90o 

Vì △OBD cân tại O => DBO = (180o - BOD) : 2 =  (180o​ - 65o) : 2 = 115o : 2 = 57,5o 

Xét △BON có: NBO + BNO + BON = 180o (tổng 3 góc trong tam giác)

=> 57,5o + BNO + 32,5o = 180o 

=> BNO = 180o - 32,5o - 57,5o 

=> BNO = 90o 

c, Vì AMO = 90o => AM ⊥ ON hay AC ⊥ ON (M \in  AC)   (1)

Vì BNO = 90o => BN ⊥ ON hay BD ⊥ ON (N \in  BD)       (2)

=> Từ (1) và (2) => AC // BD (dhnb)

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

30 tháng 10 2016

a) Xét tg OBC và tg ODA

          góc O chung

          OB= OD ( giả thiết)  (*)

          OC= OA (giả thiết)

=> tg OBC= tg ODA ( C-G-C)

Suy ra : AD= BC (1)

            góc ABE= góc EDC (2)

            góc OCB= góc OAD (3)

b) Xét tg EAB và tg ECD:    góc ABE= góc EDC ( do 2)  (4)

                                         góc BAE= góc ECD [kề bù với 2 góc OCB và OAD do (3) ]   (5)

Mặt khác: A nằm giữa O, B ( OA<OB) => AB= OB - OA

               C nằm giữa O, D ( OC<OD) => CD= OD - OC

   Mà do (*) => AB= CD (6)

  Từ (4), (5) và (6) suy ra: tg AEB= tg CED (G-C-G)

c) tg AEB= tg CED => AE= CE

                              mà OA= OC

                           OE chung của 2 tam giác

Suy ra tg OAE= tg OCE (C-C-C) (**) => góc AOE = góc COA

Do AD cắt BC(giả thiết) tại E nằm trong góc xOy => Tia OE nằm giữa 2 tia OB, OD (***)

 Từ (**) và (***) suy ra: OE là tia phân giác của góc xOy.

Hết. Chúc bạn học tốt

11 tháng 2 2021

Giải:

Hình bạn tự vẽ nhé.

a) Xét tam giác BDO và tam giác ACO có:

OD = OC (gt)

Góc O chung

AO = BO (gt)

=> Tam giác ACO = tam giác BDO (c.g.c)   (đpcm)

b) Ta có: BO = AO (gt)

              CO = DO (gt)

=> CO - BO = DO - AO

=> BC = AD

Vì tam giác BDO = tam giác ACO (chứng minh trên)

nên góc BDO = góc ACO (2 góc tương ứng)  hay góc ADI = góc BCI

       góc DBO = góc CAO (2 góc tương ứng)

Mà góc DBO + góc CBD = góc CAO + góc CAD = 180o

=> Góc CBD = góc CAD hay góc CBI = góc DAI

Xét tam giác BCI và tam giác ADI có:

Góc CBI = góc DAI (chứng minh trên)

BC = AD (chứng minh trên)

Góc BCI = góc ADI (chứng minh trên)

=> Tam giác BCI = tam giác ADI (g.c.g)

=> AI = BI (2 cạnh tương ứng)   (đpcm)

c) Ta có: tam giác BCI = tam giác ADI (chứng minh trên)

=> CI = DI (2 cạnh tương ứng)

Xét tam giác DIO và tam giác CIO có:

OI cạnh chung

DO = CO (gt)

CI = DI (chứng minh trên)

=> Tam giác CIO = tam giác DIO (c.c.c)

=> Góc DOI = góc COI (2 góc tương ứng)

hay góc IOx = góc IOy

Mà OI là tia nằm giữa 2 tia Ox, Oy

=> OI là tia phân giác của góc xOy   (đpcm)

11 tháng 2 2021

help me

12 tháng 11 2019

Giup mình với ạ 

14 tháng 3 2023

a) Ot là tia phân giác của góc bẹt xOy

nên ���^=���^=90� 

Xét ΔAOC và ΔDOB có OA=OD(gt)

���^=���^=90�(cnt)

OC=OB(gt)

Do đó ΔAOC và ΔDOB (c.g.c)⇒AC=BD

Ta có ΔAOC và ΔDOB (cmt) ⇒  �1^=�1^ và �1^=�1^(góc tương ứng)

Mà �1^+�1^=90� ( vì ���^=90� )⇒�1^+�1^=90� 

Gọi I là giao điểm của CA và BD . Xét ΔCID có �1^+�1^=90� 

���^=180�-(�1^+�1^)=90� 

b)M là trung điểm của AC (gt)⇒MC=MA=��2 tương tự ta có NB=ND=��2 mà AC=BD(cmt)⇒MC=MA=NB=ND

Xét ΔOMC và ΔONB có MC=NB(cmt)

�1^=�1^(cmt)

OC=OB(gt)

Do đó ΔOMC=ΔONB(c.g.c)⇒OM=ON

c) Ta có ΔOMC=ΔONB (cmt)⇒�1^=�3^ (góc tương ứng )

mà �1^+�2^=���^=90� (gt)⇒�2^+�3^=90�hay���^=90� 

Gọi H là trung điểm của đoạn MN . Xét ΔMHO và ΔNHO có OH : cạnh chung , MH=NH(gt);OM=ON(cmt). Do đó ΔMHO=ΔNHO(c.c.c)⇒���^=���^(góc tương ứng )

Xét ΔMON có ���^=90� (cmt)���^=���^

Mà ���^+���^180�-���^180�-90�=90� 

���^=���^=45� 

image  
16 tháng 5 2016

bạn tự vẽ hình nha

a)xét tam giác AOC và tam giác BOC

có +OB=OA(gt)

     +\(O_1=O_2\) (Ot là tia phân giác của góc xOy)

     +OC: cạnh chung

vậy tam giác AOC= tam giác BOC

b) vì tam giác AOC=tam giácBOC(CMT)

=>AC=CB(2 góc tương ứng)

do đó CO là tiaa phân giác của góc ACB