Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x-3\right|=3-2x\)
\(ĐK:x\le\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3-2x\\3-2x=3-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\0=0\left(đúng\right)\end{matrix}\right.\)
Vậy \(S=\left\{x\in R;x=\dfrac{3}{2}\right\}\)
1: \(\dfrac{4x^3-2x^2-3x+1}{x-2}\)
\(=\dfrac{4x^3-8x^2+6x^2-12x+9x-18+19}{x-2}\)
\(=4x^2+6x+9+\dfrac{19}{x-2}\)
2: \(\dfrac{2x^4-x^3-3x^2-2x}{x-2}\)
\(=\dfrac{2x^4-4x^3+5x^3-10x^2+7x^2-14x+12x-24+24}{x-2}\)
\(=2x^3+5x^2+7x+12+\dfrac{24}{x-2}\)
a, ta có A(x)=2x3+7x2+ax+b
=(2x3+2x2+2x)+(5x2+5x+5)+ax-7x+b-5
=2x(x2+x+1)+5(x2+x+1)+(a-7)x+(b-5)
=(x2+x+1)(2x+5)+(a-7)x+(b-5)
ta có: (x2+x+1)(2x+5)⋮B(x)
→để A(x)⋮B(x) thì (a-7)x+(b-5)=0
→\(\left\{{}\begin{matrix}a-7=0\\b-5=0\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}a=7\\b=5\end{matrix}\right.\)
vậy ....
mk trình bày hơi tắt xíu
bn cố gắng dịch nhé
\(A=-\left(x^2-4x+4\right)-\left(y^2+4y+4\right)+10\\ A=-\left(x-2\right)^2-\left(y+2\right)^2+10\le10\\ A_{max}=10\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
Bài 2:
a: Ta có: \(M=2x\left(2x^3-3x\right)-x^2\left(3x^2-2\right)-x^2\left(x^2-4\right)\)
\(=4x^4-6x^2-3x^4+2x^2-x^4+4x^2\)
=0
b: Ta có: \(N=x\left(y^2-x\right)-y\left(xy-x^2\right)-x\left(xy-x-1\right)\)
\(=xy^2-x^2-xy^2+x^2y-x^2y+x^2+x\)
\(=x\)
a: AN+CN=AC
=>AN=20-15=5cm
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: Xét ΔAMN và ΔNPC có
góc AMN=góc NPC(=góc B)
góc ANM=góc NCP)
=>ΔAMN đồng dạng với ΔNPC
\(x^4-4x^2+x^2-4x=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+x\left(x-4\right)=0\)
\(\Leftrightarrow x\left(x^3-4x+x-4\right)=0\)
\(\Leftrightarrow x\left(x^3-3x-4\right)=0\)
hay x=0
\(\Leftrightarrow x\left(x^3-3x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^3-3x-4=0\end{matrix}\right.\\ \Leftrightarrow x=0\)