K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 )

a)\(3\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{2}\)

b)\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}=\left(\sqrt{3}+1\right)-\left|1-\sqrt{3}\right|=\left(\sqrt{3}+1\right)-\sqrt{3}+1=2\)

Bài 2)

a)\(\sqrt{36x^2-12x+1}=5\)

\(\Leftrightarrow36x^2-12x+1=25\)

\(\Leftrightarrow36x^2-12x+1=25\)

\(\Leftrightarrow\left(6x\right)^2-2.6x+1=25\)

\(\Leftrightarrow\left(6x-1\right)^2=25\)

\(\Rightarrow6x-1=5\)

\(\Leftrightarrow6x=6\)

\(\Rightarrow x=1\)

b)\(\sqrt{x-5}-2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)

\(\Leftrightarrow\sqrt{x-5}-2\sqrt{4.\left(x-5\right)}-\frac{1}{3}\sqrt{9.\left(x-5\right)}=12\)

\(\Leftrightarrow\sqrt{x-5}-4\sqrt{\left(x-5\right)}-\sqrt{\left(x-5\right)}=12\)

\(\Leftrightarrow-4\sqrt{\left(x-5\right)}=12\)

\(\Rightarrow\)ko tồn tại giá trị nào của x trong biểu thức này

P/s tham khảo nha

25 tháng 8 2018

1a) \(3\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}\)

=\(3\sqrt{\frac{3}{3^2}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)

=\(3\frac{\sqrt{3}}{\sqrt{3^2}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}\)

=\(3\frac{\sqrt{3}}{3}-\frac{\sqrt{3}-\sqrt{2}}{3-2}\)

=\(\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)\)

=\(\sqrt{3}-\sqrt{3}+\sqrt{2}\)=\(\sqrt{2}\)

b)\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)

=\(|\sqrt{3}+1|-|1-\sqrt{3}|\)

=\(\sqrt{3}+1-\left(-\left(1-\sqrt{3}\right)\right)\)

=\(\sqrt{3}+1+1-\sqrt{3}\)

=\(1+1\)=\(2\)

2) a) \(\sqrt{36x^2-12x+1}=5\)

<=>\(\sqrt{\left(6x\right)^2-2.6x.1+1^2}=5\)

<=>\(\sqrt{\left(6x-1\right)^2}=5\)

<=>\(|6x-1|=5\)

Nếu \(6x-1>=0\)=> \(6x>=1\)=>\(x>=\frac{1}{6}\)

Nên \(|6x-1|=6x-1\)

Ta có \(|6x-1|=5\)

<=> \(6x-1=5\)

<=> \(6x=6\)

<=> \(x=1\)(thỏa)

Nếu \(6x-1< 0\)=> \(6x< 1\)=>\(x< \frac{1}{6}\)

Nên \(|6x-1|=-\left(6x-1\right)=1-6x\)

Ta có \(|6x-1|=5\)

<=> \(1-6x=5\)

<=> \(-6x=4\)

<=> \(x=\frac{4}{-6}=\frac{-2}{3}\)(thỏa)

Vậy \(x=1\)và \(x=\frac{-2}{3}\)

b) \(\sqrt{x-5}-2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)

<=>\(\sqrt{x-5}-2\sqrt{4\left(x-5\right)}-\frac{1}{3}\sqrt{9\left(x-5\right)}=12\)

<=>\(\sqrt{x-5}-2.2\sqrt{x-5}-\frac{1}{3}.3\sqrt{x-5}=12\)

<=>\(\sqrt{x-5}-4\sqrt{x-5}-\sqrt{x-5}=12\)

<=>\(-4\sqrt{x-5}=12\)

<=> \(\sqrt{x-5}=-3\)

<=> \(\left(\sqrt{x-5}\right)^2=\left(-3\right)^2\)

<=>\(x-5=9\)

<=>\(x=14\)

Vậy x=14

Kết bạn với mình nhá

26 tháng 8 2018

1)

a) \(3\sqrt{\dfrac{1}{3}}-\dfrac{1}{\sqrt{3}+\sqrt{2}}\)

\(=\sqrt{3}-\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)

\(=\sqrt{3}-\sqrt{3}+\sqrt{2}\)

\(=\sqrt{2}\)

b) \(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)

\(=\left|\sqrt{3}+1\right|-\left|1-\sqrt{3}\right|\)

\(=\sqrt{3}+1-\sqrt{3}+1\)

\(=2\)

3 tháng 9 2018

a) \(\sqrt{4\left(1-x\right)^2}-12=0\)

\(\sqrt{4\left(1-x\right)^2}=0+12\)

\(\sqrt{4\left(1-x\right)^2}=12\)

\(\left[\sqrt{4\left(1-x\right)^2}\right]^2=12^2\)

\(4-8x+4x^2=144\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)

b) \(\sqrt{4x^2-12x+9}=5\)

\(\left(\sqrt{4x^2-12x+9}\right)^2=5^2\)

\(4x^2-12x+9=25\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

15 tháng 8 2020

BÀI 1:

a)

\(A=4\sqrt{3}-2\sqrt{3}+1-\sqrt{3}\)

=>    \(A=\sqrt{3}+1\)

b)

\(B=\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\frac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\)

=>    \(B=\sqrt{5}-\frac{\sqrt{5}}{2}\)

=>    \(B=\frac{\sqrt{5}}{2}\)

11 tháng 8 2018

bài 1:

a:\(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{\left(1+\sqrt{3}\right)^2}\)
=\(\sqrt{3}-2+1+\sqrt{3}\)
=\(2\sqrt{3}-1\)
b; dài quá mink lười làm thông cảm 
bài 2:
\(\sqrt{x^2-2x+1}=7\)
=>\(\sqrt{\left(x-1\right)^2}=7 \)
=>\(\orbr{\begin{cases}x-1=7\\x-1=-7\end{cases}}\)
=>\(\orbr{\begin{cases}x=8\\x=-6\end{cases}}\)
b: \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
=>\(\sqrt{4\left(x-5\right)}-9\sqrt{x-5}=\sqrt{1-x}\)
\(=2\sqrt{x-5}-9\sqrt{x-5}=\sqrt{1-x}\)
=>\(-7\sqrt{x-5}=\sqrt{1-x}\)
=\(-7.\left(x-5\right)=1-x\)
=>\(-7x+35=1-x\)
=>\(-7x+x=1-35\)
=>\(-6x=-34\)
=>\(x\approx5.667\)
mink sợ câu b bài 2 sai đó bạn

11 tháng 8 2018

1 a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(|2-\sqrt{3}|+|1+\sqrt{3}|\)

\(2-\sqrt{3}+1+\sqrt{3}\)

\(2+1\)\(3\)

b) \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)\cdot\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{6}{3^2}}-4\sqrt{\frac{6}{2^2}}\right)\cdot\left(3\sqrt{\frac{6}{3^2}}-\sqrt{6}\sqrt{2}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-\frac{4}{2}\sqrt{6}\right)\cdot\left(\frac{3}{3}\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}\right)\cdot\left(\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)

\(\left(\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-2\right)\right)\cdot\left(\sqrt{6}\left(1-\sqrt{2}-1\right)\right)\)

\(\sqrt{6}\frac{1}{6}\cdot\sqrt{6}\left(-\sqrt{2}\right)\)

\(\sqrt{6}^2\left(\frac{-\sqrt{2}}{6}\right)\)

\(6\frac{-\sqrt{2}}{6}\)=\(-\sqrt{2}\)

2 a) \(\sqrt{x^2-2x+1}=7\)

<=> \(\sqrt{x^2-2x\cdot1+1^2}=7\)

<=> \(\sqrt{\left(x-1\right)^2}=7\)

<=> \(|x-1|=7\)

Nếu \(x-1>=0\)=>\(x>=1\)

=> \(|x-1|=x-1\)

\(x-1=7\)<=>\(x=8\)(thỏa)

Nếu \(x-1< 0\)=>\(x< 1\)

=> \(|x-1|=-\left(x-1\right)=1-x\)

\(1-x=7\)<=>\(-x=6\)<=> \(x=-6\)(thỏa)

Vậy x=8 hoặc x=-6

b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)

<=> \(\sqrt{4\left(x-5\right)}-3\frac{\sqrt{x-5}}{3}=\sqrt{1-x}\)

<=> \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)

<=> \(\sqrt{x-5}=\sqrt{1-x}\)

ĐK \(x-5>=0\)<=> \(x=5\)

\(1-x\)<=> \(-x=-1\)<=> \(x=1\)

Ta có \(\sqrt{x-5}=\sqrt{1-x}\)

<=> \(\left(\sqrt{x-5}\right)^2=\left(\sqrt{1-x}\right)^2\)

<=> \(x-5=1-x\)

<=> \(x-x=1+5\)

<=> \(0x=6\)(vô nghiệm)

Vậy phương trình vô nghiệm

Kết bạn với mình nha :)

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

14 tháng 7 2019

\(a,\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)\(ĐKXĐ:x\ge-\frac{5}{7}\)

\(\Leftrightarrow9x-7=7x+5\)

\(\Leftrightarrow9x-7x=5+7\)

\(\Leftrightarrow2x=12\)

\(\Leftrightarrow x=6\)

14 tháng 7 2019

\(b,\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3.\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}\left(2+1-1\right)=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\)

a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))

\(=5-3-\sqrt{5}\)

\(=2-\sqrt{5}\)

b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)

\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)

\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)

\(=2\sqrt{3}+\sqrt{6}\)

c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)

\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)

\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)

\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)

\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))

\(=\sqrt{3}+\frac{8}{3}\)

d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)

\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)

\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)

\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))

\(=6-3\sqrt{3}\)

16 tháng 7 2018

a

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok