Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
A=(2+2²+2³+2⁴)+(25+26+27+28)...+(217+218+219+220)
=2(1+2+4+8)+25(1+2+4+8)+...+217(1+2+4+8)
=15(2+25+29+...+217)
=30.(1+2⁴+28+...+216) chia hết cho 10
=> A có tận cùng là 0
b) Có a-5b chia hết cho 17
=> 10(a-5b) chia hết cho 17.
=> 10a-50b chia hết cho 17.
Mà 51b= 17×3b chia hết cho 17
=> 10a-50b+51b chia hết cho 17
=> 10a+b chia hết cho 17
câu 1. \(7^{2n-4}=1\Leftrightarrow2n-4=0\Leftrightarrow n=2\)
câu .2
a. rõ ràng 2x-2 là số chẵn lớn hơn hoạc bằng -2 đồng thời nó là ước của 24 nên ta có
\(2x-2\in\left\{-2;2;4;6;12;24\right\}\Rightarrow x\in\left\{0,2,3,4,7,13\right\}\)
b. rõ ràng 2x+1 là số chẵn lớn hơn hoạc bằng 1 đồng thời nó là ước của 7 nên ta có
\(2x+1\in\left\{1,7\right\}\Rightarrow x\in\left\{0,3\right\}\)
c. ta có \(a+b=a-3+b-4+7\)
ta có a-3 và b-4 chia hết cho 5 còn 7 chia 5 dư 2
vậy a+b chia 5 dư 2..
b)
P là số nguyên tố lớn hơn 3
=> p không chia hết cho 3
=> p chia 3 dư 1 hoặc p chia 3 dư 2
=> p=3K+1 hoặc p=3K+2 (K\(\in\)\(ℕ^∗\))
+ p=3K+1
(p-1).(p+1)=(3K+1-1).(3K+1+1)=3K.(3K+2) chia hết cho 3 (1)
+p=3K+2
(p-1).(p+1)=(3k+2-1).(3k+2+1)=(3k+1).(3k+3)=(3k+1).3.(k+1) chia hết cho 3 (2)
Từ (1) và (2) suy ra p là số nguyên tố lớn hơn 3 thì chia hết cho 3 (a)
Ta có: p nguyên tố lớn hơn 3
=> P là số lẻ
p-1 là số chẵn
p+1 là số chẵn
=> (p-1).(p+1) chia hết cho 8 (b)
Từ (A) và (b) suy ra p là số ntố lớn hơn 3 thì (p-1).(p+1) chia hết cho 24