K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: sinx=sin(2x+45 độ)

=>x=2x+45 độ+k*360 độ hoặc x=-2x+135 độ+k*360 độ

=>-x=45 độ+k*360 độ hoặc 3x=135 độ+k*360 độ

=>x=-45 độ-k*360 độ hoặc x=45 độ+k*120 độ

b: cosx(x-15 độ)-căn 3=0

=>cos(x-15 độ)=căn 3>1

=>PTVN

c: 3*cos(x-pi/3)=căn 7

=>cos(x-pi/3)=căn 7/3

=>x-pi/3=arccos(căn 7/3)+k2pi hoặc x-pi/3=-arccos(căn 7/3)+k2pi

=>x=arccos(căn 7/3)+pi/3+k2pi hoặc x=-arccos(căn 7/3)+pi/3+k2pi

24 tháng 7 2023

a gõ latex tốt hơn đó ạ, nhìn dễ hơn..

26 tháng 8 2021

1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)

⇔  \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)

2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)

⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)

⇔ sinx . si

27 tháng 8 2021

Giải hết dùm mik đc k câu 3 luôn

a: \(\Leftrightarrow cos2x=\dfrac{1}{\sqrt{2}}\)

=>2x=pi/4+k2pi hoặc 2x=-pi/4+k2pi

=>x=pi/8+kpi hoặc x=-pi/8+kpi

b: \(\Leftrightarrow sinx=sin\left(\dfrac{pi}{2}-3x\right)\)

=>x=pi/2-3x+k2pi hoặ x=pi/2+3x+k2pi

=>4x=pi/2+k2pi hoặc -2x=pi/2+k2pi

=>x=pi/8+kpi/2 hoặc x=-pi/4-kpi

d: \(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=-sin\left(3x+\dfrac{pi}{4}\right)\)

\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=sin\left(-3x-\dfrac{pi}{4}\right)\)

\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=cos\left(3x+\dfrac{3}{4}pi\right)\)

=>3x+3/4pi=x+pi/3+k2pi hoặc 3x+3/4pi=-x-pi/3+k2pi

=>2x=-5/12pi+k2pi hoặc 4x=-13/12pi+k2pi

=>x=-5/24pi+kpi hoặc x=-13/48pi+kpi/2

e: \(\Leftrightarrow sinx-\sqrt{3}\cdot cosx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=0\)

=>x-pi/3=kpi

=>x=kpi+pi/3

NV
19 tháng 9 2020

a.

\(\Leftrightarrow\left[{}\begin{matrix}3x=90^0-x+k360^0\\3x=90^0+x+k360^0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{45^0}{2}+k90^0\\x=45^0+k180^0\end{matrix}\right.\)

b.

\(\Leftrightarrow cos\left(3x+45^0\right)=cos\left(x-180^0\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+45^0=x-180^0+k360^0\\3x+45^0=180^0-x+k360^0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{225^0}{2}+k180^0\\x=\frac{135^0}{4}+k90^0\end{matrix}\right.\)

c.

\(\Leftrightarrow sin\left(2x+\frac{\pi}{3}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=-x+k2\pi\\2x+\frac{\pi}{3}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{9}+\frac{k2\pi}{3}\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
19 tháng 9 2020

d.

\(\Leftrightarrow sin\left(x-\frac{2\pi}{3}\right)=cos2x\)

\(\Leftrightarrow sin\left(x-\frac{2\pi}{3}\right)=sin\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{2\pi}{3}=\frac{\pi}{2}-x+k2\pi\\x-\frac{2\pi}{3}=2x+\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7\pi}{12}+k\pi\\x=-\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

e.

\(\Leftrightarrow cos\left(2x-\frac{\pi}{4}\right)=sin\left(2x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow cos\left(2x-\frac{\pi}{4}\right)=cos\left(\frac{\pi}{6}-2x\right)\)

\(\Leftrightarrow2x-\frac{\pi}{4}=\frac{\pi}{6}-2x+k2\pi\)

\(\Leftrightarrow x=\frac{5\pi}{48}+\frac{k\pi}{2}\)

19 tháng 9 2016

a, ta có 2x + π/3 = 3π/4 +k2π hoặc 2x + π/3 = -3π/4 + k2π

=> x= 5π/24 + kπ hoặc x= -13π/24 +kπ

b, đề sai phải ko

c,  cos22x - sin22x - 2sinx -1=0

<=> -2sin22x -2sin2x =0

<=> sin2x=0 hoặc sin2x=-1

<=> x=kπ hoặc x= π/2 + kπ ; x=-π/4 +kπ hoặc x=5π/8 + kπ

d, cos5xcosπ/4 - sin5xsinπ/4 = -1/2

   cos( 5x + π/4 ) = -1/2

   <=> x=π/12 +k2π/5 hoặc x= -11π/60 + k2π/5

f,4x+π/3=3π/10 -x +k2π  hoặc 4x+π/3 = x - 3π/10 +k2π

<=> x =-π/150 + k2π/5 hoặc x = π/90 +k2π/3

24 tháng 10 2021

a, \(cos\left(x-\dfrac{\pi}{3}\right)-sin\left(x-\dfrac{\pi}{3}\right)=1\)

\(\Leftrightarrow\sqrt{2}cos\left(x-\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow cos\left(x-\dfrac{7\pi}{12}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow x-\dfrac{7\pi}{12}=\pm\dfrac{\pi}{4}+k2\pi\)

...

24 tháng 10 2021

b, \(\sqrt{3}sin2x+2cos^2x=2sinx+1\)

\(\Leftrightarrow\sqrt{3}sin2x+2cos^2x-1=2sinx\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x+\dfrac{1}{2}cos2x=sinx\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=x+k2\pi\\2x+\dfrac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

14 tháng 8 2017

a, \(sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2cos^2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)=0\)

\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2\cdot\left[1+cos2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)\right]=0\)

\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-1-cos\left(\dfrac{\pi}{2}-x\right)=0\)

\(\Leftrightarrow sin\dfrac{s}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x-sinx=0\)

\(\Leftrightarrow sinx\cdot\left(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\text{ (1) }\\sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\text{ (2) }\end{matrix}\right.\)

(1) : \(sinx=0\Leftrightarrow x=k\pi\left(k\in Z\right)\)

(2) : \(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-cos\dfrac{x}{2}\cdot2sin\dfrac{x}{2}\cdot cos\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot cos^2\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot\left(1-sin^2\dfrac{x}{2}\right)-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}+2sin^3\dfrac{x}{2}-1=0\)

\(\Leftrightarrow2sin^3\dfrac{x}{2}-sin\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}=1\Leftrightarrow\dfrac{x}{2}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\pi+k4\pi\left(k\in Z\right)\)

14 tháng 8 2017

b, \(tanx-3cotx=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow\dfrac{sinx}{cosx}-\dfrac{3cos}{sinx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow\dfrac{sin^2x-3cos^2x}{sinx-cosx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow sin^2x-3cos^2x=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)

\(\Leftrightarrow\left(sinx-\sqrt{3}\cdot cosx\right)\cdot\left(sinx+\sqrt{3}\cdot cosx\right)=4\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)

\(\Leftrightarrow\left(sinx+\sqrt{3}\cdot cosx\right)\cdot\left[\left(sinx-\sqrt{3}\cdot cosx\right)-4sinx\cdot cosx\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}\cdot cosx=0\text{ (1) }\\sinx-\sqrt{3}\cdot cosx-4sinx\cdot cosx=0\text{ (2) }\end{matrix}\right.\)

(1) : \(sinx+\sqrt{3}\cdot cosx=0\)

\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=0\)

\(\Leftrightarrow cos\dfrac{\pi}{3}\cdot sinx+sin\dfrac{\pi}{3}\cdot cosx=0\)

\(\Leftrightarrow sin\cdot\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow x+\dfrac{\pi}{3}=k\pi\Leftrightarrow x=\dfrac{-\pi}{3}+k\pi\left(k\in Z\right)\)

(2) : \(sinx-\sqrt{3}cosx-4sinx\cdot cosx=0\)

\(\Leftrightarrow sinx-\sqrt{3}cos=2sin2x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cos2=sin2x\)

\(\Leftrightarrow cos\dfrac{\pi}{3}-sinx-sin\dfrac{\pi}{3}\cdot cosx=sin2x\)

\(\Leftrightarrow sin\cdot\left(x-\dfrac{\pi}{3}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=2x+k2\pi\\x-\dfrac{\pi}{3}=\pi-2x+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\left(k\in Z\right)\end{matrix}\right.\)

27 tháng 7 2019
https://i.imgur.com/EkFiJjR.jpg
27 tháng 7 2019
https://i.imgur.com/bDYRFb9.jpg

Mình vội nên suy nghĩ có 5 phút nếu sai sót gì mong bạn thông cảm