Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
ĐK: $x\geq \frac{2}{3}$
Đặt $\sqrt{4x+1}=a; \sqrt{3x-2}=b(a,b\geq 0)$
PT trở thành:
$a-b=a^2-b^2$
$\Leftrightarrow (a-b)(a+b)-(a-b)=0$
$\Leftrightarrow (a-b)(a+b-1)=0$
Nếu $a-b=0\Leftrightarrow 4x+1=3x-2\Leftrightarrow x=-3$ (loại vì không thỏa ĐKXĐ)
Nếu $a+b-1=0$
$\Leftrightarrow b=1-a$
$\Leftrightarrow \sqrt{3x-2}=1-\sqrt{4x+1}$
$\Rightarrow 3x-2=4x+2-2\sqrt{4x+1}$
$\Leftrightarrow x+4=2\sqrt{4x+1}$
$\Rightarrow (x+4)^2=4(4x+1)$
$\Leftrightarrow x^2-8x+12=0\Leftrightarrow x=6$ hoặc $x=2$
Vậy.......
Bài 5:
ĐK: $x\geq -2$
PT $\Leftrightarrow 3\sqrt{(x+2)(x^2-2x+4)}=2x^2-3x+10$
Đặt $\sqrt{x+2}=a; \sqrt{x^2-2x+4}=b(a,b\geq 0)$
Khi đó PT trở thành:
$3ab=2b^2+a^2$
$\Leftrightarrow a^2-3ab+2b^2=0$
$\Leftrightarrow a(a-b)-2b(a-b)=0$
$\Leftrightarrow (a-b)(a-2b)=0$
Nếu $a-b=0\Rightarrow a^2-b^2=0$
$\Leftrightarrow x+2-(x^2-2x+4)=0$
$\Leftrightarrow x^2-3x+2=0\Rightarrow x=1$ hoặc $x=2$ (thỏa mãn)
Nếu $a-2b=0\Rightarrow 4b^2-a^2=0$
$\Leftrightarrow 4(x^2-2x+4)-(x+2)=0$
$\Leftrightarrow 4x^2-9x+14=0$ (pt vô nghiệm)
Vậy.........
1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)
Thì ta có:
\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)
\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)
2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)
\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)
\(=\frac{3}{4}\)
Câu hỏi của tran huu dinh - Toán lớp 8 - Học toán với OnlineMath
Đây nè bạn
mơn bạn mik cũng đặt ẩn phụ hoàn toàn
zậy bạn lm giúp mik hai câu cúi nhé!!!!
1) ĐK: \(x\ge-2012\)
Đặt \(\sqrt{x+2012}=t\left(t\ge0\right)\Rightarrow x=t^2-2012\)
Ta có hệ \(\hept{\begin{cases}x^2+t=2012\\-x+t^2=2012\end{cases}}\)
\(\Rightarrow x^2+t-t^2+x=0\Rightarrow\left(x+t\right)\left(x-t+1\right)=0\)
Với \(x+t=0\Leftrightarrow\sqrt{x+2012}=x\Rightarrow x^2-x-2012=0\Rightarrow x=\frac{\sqrt{8049}+1}{2}\)
Với \(x-t+1=0\Leftrightarrow\sqrt{x+2012}=x+1\Rightarrow x^2+x-2011=0\Rightarrow x=\frac{\sqrt{8045}-1}{2}\)
2) ĐK \(\orbr{\begin{cases}x< -\frac{1}{3}\\x>1\end{cases}}\)
Đặt \(\sqrt{\frac{3x+1}{x-1}}=t\), phương trình trở thành \(4t+\frac{1}{t}=4\Rightarrow\frac{4t^2-4t+1}{t}=0\Rightarrow t=\frac{1}{2}\)
Khi đó ta có \(\sqrt{\frac{3x+1}{x-1}}=\frac{1}{2}\Rightarrow\frac{3x+1}{x-1}=\frac{1}{4}\Rightarrow11x+5=0\)
\(\Rightarrow x=-\frac{5}{11}\left(tm\right)\)
c) TH1: \(x\le-1\), phương trình trở thành \(\left(x-3\right)\left(x+1\right)-4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Đặt \(\sqrt{\left(x-3\right)\left(x+1\right)}=t\left(t\ge0\right)\) thì \(t^2-4t+3=0\Rightarrow\orbr{\begin{cases}t=1\\t=3\end{cases}}\)
Với \(t=1\Rightarrow\left(x-3\right)\left(x+1\right)=1\Rightarrow x^2-2x-4=0\Rightarrow\orbr{\begin{cases}x=1+\sqrt{5}\left(l\right)\\x=1-\sqrt{5}\left(tm\right)\end{cases}}\)
Với \(t=3\Rightarrow\left(x-3\right)\left(x+1\right)=9\Rightarrow x^2-2x-12=0\Rightarrow\orbr{\begin{cases}x=1+\sqrt{13}\left(l\right)\\x=1-\sqrt{13}\left(tm\right)\end{cases}}\)
Với \(x>3\), phương trình trở thành \(\left(x-3\right)\left(x+1\right)+4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Đặt \(\sqrt{\left(x-3\right)\left(x+1\right)}=t\left(t\ge0\right)\) thì \(t^2+4t+3=0\Rightarrow\orbr{\begin{cases}t=-1\\t=-3\end{cases}\left(l\right)}\)
Vậy pt có 2 nghiệm \(x=1-\sqrt{5}\) hoặc \(x=1-\sqrt{13}\)
b, \(\sqrt[3]{24+x}+\sqrt{12-x}=6\) (đk \(-24\le x\le12\)) (*)
Đặt \(\sqrt[3]{24+x}=a\) , \(\sqrt{12-x}=b\left(b\ge0\right)\)
Có \(a^3+b^2=24+x+12-x=36\)(1)
a+b=6 => b=6-a
Thay b=6-a vào (1) có:
\(a^3+\left(6-a\right)^2=36\)
<=> \(a^3+a^2-12a+36=36\)
<=> \(a^3+a^2-12a=0\)
<=> \(a\left(a^2+a-12\right)=0\)
<=> \(a\left(a^2-3a+4a-12\right)=0\)
<=> \(a\left(a+4\right)\left(a-3\right)=0\)
=>\(\left[{}\begin{matrix}a=0\\a=-4\\a=3\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}24+x=0\\24+x=-4^3=-64\\24+x=3^3=27\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=-24\\x=-88\\x=3\end{matrix}\right.\)(tm pt(*))
Vậy pt (*) có tập nghiệm \(S=\left\{-24,-88,3\right\}\)
a/
Đặt \(\sqrt{x^2-4x+5}=t>0\Rightarrow x^2-4x=t^2-5\)
Pt trở thành: \(t^2-5+2=2t\Leftrightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-4x+5}=3\Leftrightarrow x^2-4x-4=0\) (bấm máy)
b/ ĐKXĐ: \(-4\le x\le6\)
\(-x^2+2x+24+\sqrt{-x^2+2x+24}-12=0\)
Đặt \(\sqrt{-x^2+2x+24}=t\ge0\)
\(\Rightarrow t^2+t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{-x^2+2x+24}=4\Rightarrow x^2-2x-8=0\) (bấm máy)
c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19
ĐKXĐ:...
a/ \(\Leftrightarrow\sqrt{x^2+4\sqrt{x^2-4}}=16-2x^2\)
Đặt \(\sqrt{x^2-4}=a\ge0\Rightarrow x^2=a^2+4\)
\(\Leftrightarrow\sqrt{a^2+4+4a}=16-2\left(a^2+4\right)\)
\(\Leftrightarrow2a^2+a+2-8=0\)
\(\Leftrightarrow2a^2+a-6=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-4}=\frac{3}{2}\Rightarrow x^2-4=\frac{9}{4}\)
b/
\(\Leftrightarrow\left(2x^2+1\right)\sqrt{2x^2+1}=2\left(2x^2+1\right)+2+3\sqrt{2x^2+1}\)
Đặt \(\sqrt{2x^2+1}=a>0\)
\(\Leftrightarrow a^3=2a^2+3a+2\)
\(\Leftrightarrow a^3-2x^2-3x-2=0\)
Nghiệm xấu, có lẽ bạn chép nhầm chỗ nào đó
a/ Đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(\Leftrightarrow3\left(a^2-2\right)-16a+26=0\)
\(\Leftrightarrow3a^2-16a+20=0\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{10}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=\frac{10}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x+1=0\\3x^2-10x+3=0\end{matrix}\right.\)
b/ \(\Leftrightarrow\left(x+2\right)\left(x+12\right)\left(x+3\right)\left(x+8\right)=4\)
\(\Leftrightarrow\left(x^2+14x+24\right)\left(x^2+11x+24\right)=4\)
Đề thiếu ko bạn? Vế phải là 4 hay \(4x^2\)?