K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

 a) 3x - 2 = 2x - 3

⇔ 3x - 2x = -3 + 2

⇔ x          = -1

Vậy phương trình có nghiệm duy nhất x = -1.

b) 3 - 4u + 24 + 6u = u + 27 + 3u

⇔ 2u + 27           = 4u + 27

⇔ 2u - 4u            = 27 - 27

⇔ -2u                  = 0

⇔ u                     = 0

Vậy phương trình có nghiệm duy nhất u = 0.

c) 5 - (x - 6) = 4(3 - 2x)

⇔ 5 - x + 6 = 12 - 8x

⇔ -x + 11   = 12 - 8x

⇔ -x + 8x   = 12 - 11

⇔ 7x          = 1

⇔ x            = 17

Vậy phương trình có nghiệm duy nhất x = 17.

d) -6(1,5 - 2x) = 3(-15 + 2x)

⇔ -9 + 12x      = -45 + 6x

⇔ 12x - 6x      = -45 + 9

⇔ 6x               = -36

⇔ x                 = -6

Vậy phương trình có nghiệm duy nhất x = -6

20 tháng 6 2018

giải các phương trình :

a)

\(3x-2=2x-3\)

\(\Leftrightarrow3x-2x=2-3\)

\(\Leftrightarrow x=-1\)

b)

\(3-4u+24+6u=u+27+3u\)

\(\Leftrightarrow-4u+6u-u-3u=-3-24+27\)

\(\Leftrightarrow6u=0\)

\(\Leftrightarrow u=0\)

c)

\(5-\left(x-6\right)=4\left(3-2x\right)\)

\(\Leftrightarrow5-x+6=12-8x\)

\(\Leftrightarrow-x+8x=-5-6+12\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\frac{1}{7}\)

d)

\(-6.\left(1.5-2x\right)=3.\left(-15+2x\right)\)

\(\Leftrightarrow-9+12x=-45+6x\)

\(\Leftrightarrow12x-6x=9-45\)

\(\Leftrightarrow6x=-36\)

\(\Leftrightarrow x=-6\)

15 tháng 1 2017

a, 3x -2 = 2x - 3 

=> 3x - 2x = 2 - 3 

=> x= - 1

b, là tương tự câu a 

các câu sau bạn nhân phá ra mà giải nhé

15 tháng 1 2017

a, 3x - 2 = 2x - 3

3x - 2x = -3 + 2

x = -1

b, 3 - 4u + 24 + 6u = u + 27 + 3u

-4u + 6u - u - 3u = 27 - 3 - 24

-2u = 0

u = 0 : (-2)

u = 0

c, 5 - (x - 6) = 4(3 - 2x)

5 - x + 6 = 12 - 8x

-x + 8x = 12 - 5 - 6

7x = 1

x = 1/7

d, -6(1,5 - 2x) = 3(-15 + 2x)

-9 + 12x = -45 + 6x

12x - 6x = -45 + 9

6x = -36

x = (-36) : 6

x = -6

e, 0,1 - 2(0,5 - 0,1) = 2(t - 2,5) - 0,7

0,1 - 1 + 0,2 = 2t - 5 - 0,7

-2t = -5 - 0,7 - 0,1 + 1 - 0,2

-2t = -5

t = -5/-2

t = 5/2

15 tháng 1 2018

a,\(3x-2=2x-3\)

\(\Leftrightarrow\)\(3x-2-2x+3=0\)

\(\Leftrightarrow\)\(x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy tập nhgiệm của pt là S= {-1}

b,\(3-4u+24+6u=u+27+3u\)

\(\Leftrightarrow3-4u+24+6u-u-27-3u=0\)

\(\Leftrightarrow-2u=0\)

\(\Leftrightarrow u=0\)

Vậy tập nghiệm của pt là S={0}

c,\(5-\left(x-6\right)=4\left(3-2x\right)\)

\(\Leftrightarrow5-x+6-12+8x=0\)

\(\Leftrightarrow7x-1=0\)

\(\Leftrightarrow x=\frac{1}{7}\)

Vậy tập nghiệm của pt là S={\(\frac{1}{7}\)}

d,\(-6\left(1,5-2x\right)=3\left(-15+2x\right)\)

\(\Leftrightarrow-9+12x+45-6x=0\)

\(\Leftrightarrow6x+36=0\)

\(\Leftrightarrow6\left(x+6\right)=0\)

\(\Leftrightarrow x+6=0\)

\(\Leftrightarrow x=-6\)

Vậu tập nghiệm của pt là S={-6}

e,\(0,1-2\left(0,5t-0,1\right)=2\left(t-2,5\right)-0,7\)

\(\Leftrightarrow0,1-t+0,2-2t+5+0,7=0\)

\(\Leftrightarrow6-3t=0\)

\(\Leftrightarrow3\left(2-t\right)=0\)

\(\Leftrightarrow2-t=0\)

\(\Leftrightarrow t=2\)

Vậy tập nghiệm của pt là S={2}

\(\)

a) 3x – 2 = 2x – 3

<=>  3x – 2x = -3 + 2

<=>   x          = -1

Vậy phương trình có nghiệm duy nhất là x = -1

b) 3 – 4u + 24 + 6u = u + 27 + 3u

<=> 2u + 27           = 4u + 27

<=> 2u – 4u            = 27 – 27

<=> -2u                  = 0

<=> u                     = 0

Vậy phương trình có nghiệm duy nhất u = 0

 5 – (x – 6) = 4(3 – 2x)

<=> 5 – x + 6 = 12 – 8x

<=> -x + 11   = 12 – 8x

<=> -x + 8x   = 12 – 11

<=> 7x          = 1

<=> x            = 1/7

Vậy phương trình có nghiệm duy nhất x = 1/7

d) -6(1,5 – 2x) = 3(-15 + 2x)

<=> -9 + 12x      = -45 + 6x

<=> 12x – 6x      = -45 + 9

<=> 6x               = -36

<=> x                 = -6

Vậy phương trình có nghiệm duy nhất x = -6

( Làm vậy đúng chưa mn )

22 tháng 4 2017

a) 3x - 2 = 2x - 3

⇔ 3x - 2x = - 3 + 2

⇔ x = - 1

Vậy phương trình có nghiệm duy nhất x = - 1.

b) 3 - 4u + 24 + 6u = u + 27 + 3u

⇔ 2u + 27 = 4u + 27

⇔ 2u - 4u = 27 - 27

⇔ - 2u = 0

⇔ u = 0

Vậy phương trình có nghiệm duy nhất u = 0.

c) 5 - (x - 6) = 4(3 - 2x)

⇔ 5 - x + 6 = 12 - 8x

⇔ - x + 11 = 12 - 8x

⇔ - x + 8x = 12 - 11

⇔ 7x = 1

⇔ x = \(\dfrac{1}{7}\)

Vậy phương trình có nghiệm duy nhất x = \(\dfrac{1}{7}\).

d) -6(1,5 - 2x) = 3(-15 + 2x)

⇔ -9 + 12x = - 45 + 6x

⇔ 12x - 6x = - 45 + 9

⇔ 6x = -36

⇔ x = - 6

Vậy phương trình có nghiệm duy nhất x = - 6.

e) 0,1 - 2(0,5t - 0,1) = 2(t - 2,5) - 0,7

⇔ 0,1 - t + 0,2 = 2t - 5 - 0,7

⇔ -t + 0,3 = 2t - 5,7

⇔ - t - 2t = -5,7 - 0,3

⇔ - 3t = - 6

⇔ t = 2

Vậy phương trình có nghiệm duy nhất t = 2.

f) \(\dfrac{3}{2}\left(x-\dfrac{5}{4}-\dfrac{5}{8}\right)=x\)

\(\Leftrightarrow\dfrac{3}{2}x-\dfrac{15}{8}-\dfrac{5}{8}=x\\ \Leftrightarrow\dfrac{3}{2}x-x=\dfrac{15}{8}+\dfrac{5}{8}\\ \Leftrightarrow\dfrac{1}{2}x=\dfrac{20}{8}\\ \Leftrightarrow x=\dfrac{20}{8}:\dfrac{1}{2}\\ \Leftrightarrow x=5\)

Vậy phương trình có nghiệm duy nhất x = 5.

25 tháng 1 2021

a)3x-2=2x-3

⇔3x-2x=-3+2

⇔x=-1

b)3-4u+24+6u=u+27+3u

⇔-4u+6u-u-3u=27-3-24

⇔-2u=0

⇔u=0

c)5-(x-6)=4(3-2x)

⇔5-x+6=12-8x

⇔-x+8x=12-5-6

⇔7x=1

⇔x=1/7

d)-6(1,5-2x)=3(-15+2x)

⇔-9+12x=-45+6x

⇔12x-6x=-45+9

⇔6x=-36

⇔x=-6

1 tháng 8 2017

a) \(3x-2=2x-3\)

\(\Leftrightarrow3x-2x=-3+2\)

\(\Leftrightarrow x=-1\)

20 tháng 6 2018

a) 3x - 2 = 2x - 3

⇔ 3x - 2x = -3 + 2

⇔ x          = -1

Vậy phương trình có nghiệm duy nhất x = -1.

b) 3 - 4u + 24 + 6u = u + 27 + 3u

⇔ 2u + 27           = 4u + 27

⇔ 2u - 4u            = 27 - 27

⇔ -2u                  = 0

⇔ u                     = 0

Vậy phương trình có nghiệm duy nhất u = 0.

c) 5 - (x - 6) = 4(3 - 2x)

⇔ 5 - x + 6 = 12 - 8x

⇔ -x + 11   = 12 - 8x

⇔ -x + 8x   = 12 - 11

⇔ 7x          = 1

⇔ x            = 17

Vậy phương trình có nghiệm duy nhất x = 17.

d) -6(1,5 - 2x) = 3(-15 + 2x)

⇔ -9 + 12x      = -45 + 6x

⇔ 12x - 6x      = -45 + 9

⇔ 6x               = -36

⇔ x                 = -6

Vậy phương trình có nghiệm duy nhất x = -6

27 tháng 3 2018

a) 3x - 2 = 2x - 3

⇔ 3x - 2x = -3 + 2

⇔ x          = -1

Vậy phương trình có nghiệm duy nhất x = -1.

b) 3 - 4u + 24 + 6u = u + 27 + 3u

⇔ 2u + 27           = 4u + 27

⇔ 2u - 4u            = 27 - 27

⇔ -2u                  = 0

⇔ u                     = 0

Vậy phương trình có nghiệm duy nhất u = 0.

27 tháng 3 2018

đăng cho có đúng ko dytt mọe  m :)

a: =>-3x=-12

=>x=4

b: =>3(3x+2)-3x-1=12x+10

=>9x+6-3x-1=12x+10

=>12x+10=6x+5

=>6x=-5

=>x=-5/6

c: =>x(x+1)+x(x-3)=4x

=>x^2+x+x^2-3x-4x=0

=>2x^2-6x=0

=>2x(x-3)=0

=>x=3(loại) hoặc x=0(nhận)

13 tháng 3 2023

loading...  loading...  

a) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)

Suy ra: x+2=0

hay x=-2(thỏa ĐK)

Vậy: S={-2}

d)

ĐKXĐ: \(x\notin\left\{1;3\right\}\)

Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)

\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)

Suy ra: \(x^2-3x+5x-15=x^2-1-8\)

\(\Leftrightarrow2x-15+9=0\)

\(\Leftrightarrow2x-6=0\)

hay x=3(loại)

Vậy: \(S=\varnothing\)

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Bài 1:

a. 

$(4x^2+4x+1)-x^2=0$

$\Leftrightarrow (2x+1)^2-x^2=0$

$\Leftrightarrow (2x+1-x)(2x+1+x)=0$

$\Leftrightarrow (x+1)(3x+1)=0$

$\Rightarrow x+1=0$ hoặc $3x+1=0$

$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$

b.

$x^2-2x+1=4$

$\Leftrightarrow (x-1)^2=2^2$

$\Leftrightarrow (x-1)^2-2^2=0$

$\Leftrightarrow (x-1-2)(x-1+2)=0$

$\Leftrightarrow (x-3)(x+1)=0$

$\Leftrightarrow x-3=0$ hoặc $x+1=0$

$\Leftrightarrow x=3$ hoặc $x=-1$

c.

$x^2-5x+6=0$

$\Leftrightarrow (x^2-2x)-(3x-6)=0$

$\Leftrightarrow x(x-2)-3(x-2)=0$

$\Leftrightarrow (x-2)(x-3)=0$

$\Leftrightarrow x-2=0$ hoặc $x-3=0$

$\Leftrightarrow x=2$ hoặc $x=3$

 

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

2c.

ĐKXĐ: $x\neq 0$

PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$

$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$

$\Leftrightarrow x=-4$ (tm)

2d.

ĐKXĐ: $x\neq 2$

PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$

$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$

$\Rightarrow 3x-5=3-x$

$\Leftrightarrow 4x=8$

$\Leftrightarrow x=2$ (không tm) 

Vậy pt vô nghiệm.

a) ĐKXĐ: x≠-5

Ta có: \(\dfrac{2x-5}{x+5}=4\)

\(\Leftrightarrow2x-5=4\left(x+5\right)\)

\(\Leftrightarrow2x-5=4x+20\)

\(\Leftrightarrow2x-5-4x-20=0\)

\(\Leftrightarrow-2x-25=0\)

\(\Leftrightarrow-2x=25\)

hay \(x=\dfrac{-25}{2}\)(nhận)

Vậy: \(S=\left\{-\dfrac{25}{2}\right\}\)

b) ĐKXĐ: x≠0

Ta có: \(\dfrac{x^2-4}{x}=\dfrac{2x+3}{2}\)

\(\Leftrightarrow2\left(x^2-4\right)=x\left(2x+3\right)\)

\(\Leftrightarrow2x^2-8=2x^2+3x\)

\(\Leftrightarrow2x^2-8-2x^2-3x=0\)

\(\Leftrightarrow-3x-8=0\)

\(\Leftrightarrow-3x=8\)

hay \(x=\dfrac{-8}{3}\)(nhận)

Vậy: \(S=\left\{-\dfrac{8}{3}\right\}\)

c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{2};-5\right\}\)

Ta có: \(\dfrac{2x+3}{2x-1}=\dfrac{x-3}{x+5}\)

\(\Leftrightarrow\left(2x+3\right)\left(x+5\right)=\left(2x-1\right)\left(x-3\right)\)

\(\Leftrightarrow2x^2+10x+3x+15=2x^2-6x-x+3\)

\(\Leftrightarrow2x^2+13x+15=2x^2-7x+3\)

\(\Leftrightarrow2x^2+13x+15-2x^2+7x-3=0\)

\(\Leftrightarrow20x+12=0\)

\(\Leftrightarrow20x=-12\)

hay \(x=-\dfrac{3}{5}\)(nhận)

Vậy: \(S=\left\{-\dfrac{3}{5}\right\}\)

d) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(x+7\right)\left(6x+1\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+x+42x+7\)

\(\Leftrightarrow6x^2-13x+6=6x^2+43x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)