Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
a: =>3,6-1,7x=2,3-1,4-4=0,9-4=-3,1
=>1,7x=6,7
hay x=67/17
b: \(\Leftrightarrow30\left(5x+4\right)-15\left(3x+5\right)=24\left(4x+9\right)-40\left(x-9\right)\)
=>150x+120-45x-75=96x+216-40x+360
=>105x+45=56x+576
=>49x=531
hay x=531/49
=) vào ngay quả bảng phá dấu GTTĐ, cay thế :<
a, \(3x+\frac{2x}{3}-3=\frac{5}{2}x-2\Leftrightarrow\frac{18x+4x-18}{6}=\frac{15x-12}{6}\)
\(\Rightarrow22x-18=15x-12\Leftrightarrow7x=6\Leftrightarrow x=\frac{6}{7}\)
Vậy pt có nghiệm x = 6/7
b, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=\frac{x+7}{12}\)
\(\Leftrightarrow\frac{9\left(2x+1\right)-2\left(5x+3\right)+4\left(x+1\right)}{12}=\frac{x+7}{12}\)
\(\Rightarrow18x+9-10x-6+4x+4=x+7\)
\(\Leftrightarrow12x+7=x+7\Leftrightarrow11x=0\Leftrightarrow x=0\)
Vậy pt có nghiệm là x = 0
c, \(\frac{3x}{x-3}-\frac{x-3}{x+3}=2\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow\frac{3x\left(x+3\right)-\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow3x^2+9x-x^2+6x-9=2\left(x^2-9\right)\)
\(\Leftrightarrow2x^2+15x-9=2x^2-18\Leftrightarrow15x+9=0\Leftrightarrow x=-\frac{9}{15}=-\frac{3}{5}\)
Vậy pt có nghiệm là x = -3/5
d, Sửa đề : \(\frac{x+10}{2003}+\frac{x+6}{2007}+\frac{x+2}{2011}+3=0\)
\(\Leftrightarrow\frac{x+10}{2003}+1+\frac{x+6}{2007}+1+\frac{x+2}{2011}+1=0\)
\(\Leftrightarrow\frac{x+2013}{2003}+\frac{x+2013}{2007}+\frac{x+2013}{2011}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2003}+\frac{1}{2007}+\frac{1}{2011}\ne0\right)=0\Leftrightarrow x=-2013\)
Vậy pt có nghiệm là x = -2013
e, \(4\left(x+5\right)-3\left|2x-1\right|=10\)
\(\Leftrightarrow4x+20-3\left|2x-1\right|=10\Leftrightarrow-3\left|2x-1\right|=-10-4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{10+4x}{3}\)
ĐK : \(\frac{10+4x}{3}\ge0\Leftrightarrow10+4x\ge0\Leftrightarrow x\ge-\frac{10}{4}=-\frac{5}{2}\)
TH1 : \(2x-1=\frac{10+4x}{3}\Rightarrow6x-3=10+4x\Leftrightarrow2x=13\Leftrightarrow x=\frac{13}{2}\)( tm )
TH2 : \(2x-1=\frac{-10-4x}{3}\Rightarrow6x-3=-10-4x\Leftrightarrow10x=-7\Leftrightarrow x=-\frac{7}{10}\)( tm )
f, để mình xem lại đã, quên cách phá GTTĐ rồi :v :>
\(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\left(x\ne1;x\ne3\right)\)
\(\Leftrightarrow\frac{x+5}{x-1}-\frac{x+1}{x-3}+\frac{8}{x^2-4x+3}=0\)
\(\Leftrightarrow\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}+\frac{8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x-15}{\left(x-1\right)\left(x-3\right)}-\frac{x^2-1}{\left(x-3\right)\left(x-1\right)}+\frac{8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x-15-x^2+1+8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Rightarrow2x-4=0\)
<=> 2x=4
<=> x=2 (tmđk)
Vậy x=2
b) \(\frac{x+1}{x-2}-\frac{5}{x+2}=\frac{12}{x^2-4}+1\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{x+1}{x-2}-\frac{5}{x+2}-\frac{12}{\left(x-2\right)\left(x+2\right)}-1=0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{12}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-4}{x^2-4}=0\)
\(\Leftrightarrow\frac{x^2+3x+2-5x+10-12-x^2+4}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{-2x+2}{\left(x-2\right)\left(x+2\right)}=0\)
=> -2x+2=0
<=> -2x=-2
<=> x=1 (tmđk)
Vậy x=1
1: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
\(\Leftrightarrow\dfrac{5x^2-12}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x+3}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x^2-5x}{\left(x+1\right)\left(x-1\right)}\)
Suy ra: \(5x^2+3x-9=5x^2-5x\)
\(\Leftrightarrow8x=9\)
hay \(x=\dfrac{9}{8}\left(tm\right)\)
2: Ta có: \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)
\(\Leftrightarrow\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}+\dfrac{3x-15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)
Suy ra: \(6x=3x-15\)
\(\Leftrightarrow3x=-15\)
hay \(x=-5\left(loại\right)\)
2. ĐKXĐ: $x\neq \pm 5$
PT \(\Leftrightarrow \frac{3}{x-5}+\frac{3x-15}{x^2-25}=\frac{3}{x+5}\)
\(\Leftrightarrow \frac{3}{x-5}+\frac{3(x-5)}{(x-5)(x+5)}=\frac{3}{x+5}\)
\(\Leftrightarrow \frac{3}{x-5}+\frac{3}{x+5}=\frac{3}{x+5}\Leftrightarrow \frac{3}{x-5}=0\) (vô lý)
Vậy pt vô nghiệm.
k,\(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)
giúp mk câu k nhé đề bài như trên
b: \(\Leftrightarrow4x+8-9=4x-4\)
=>-1=-4(loại)
d: \(\Leftrightarrow3\left(x-2\right)+2\left(x+1\right)=8x\)
=>8x=3x-6+2x+2=5x-4
=>3x=-4
=>x=-4/3
f: \(\Leftrightarrow3\left(x+2\right)+4\left(2x-3\right)=2\left(x-12\right)\)
=>3x+6+8x-12=2x-24
=>11x-6=2x-24
=>9x=-18
=>x=-2
1: Ta có: \(\dfrac{3}{x-3}+\dfrac{4}{x+3}=\dfrac{3x-7}{x^2-9}\)
\(\Leftrightarrow\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}+\dfrac{4x-12}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-7}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(3x+9+4x-12=3x-7\)
\(\Leftrightarrow4x=-7+12-9=-4\)
hay \(x=-1\left(nhận\right)\)
2: Ta có: \(\dfrac{3}{x-4}-\dfrac{4}{x+4}=\dfrac{3x-4}{x^2-16}\)
\(\Leftrightarrow\dfrac{3x+12}{\left(x-4\right)\left(x+4\right)}-\dfrac{4x-16}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x-4}{\left(x-4\right)\left(x+4\right)}\)
Suy ra: \(3x+12-4x+16=3x-4\)
\(\Leftrightarrow28-4x=-4\)
\(\Leftrightarrow4x=32\)
hay \(x=8\left(tm\right)\)
3: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
Suy ra: \(5x^2-12+3x+3=5x^2-5x\)
\(\Leftrightarrow3x-9+5x=0\)
\(\Leftrightarrow8x=9\)
hay \(x=\dfrac{9}{8}\left(nhận\right)\)
b: \(\Leftrightarrow\dfrac{-3x^2+36x+12}{3\left(x+4\right)\left(x-1\right)}=\dfrac{36\left(x-1\right)}{3\left(x+4\right)\left(x-1\right)}+\dfrac{12\left(x+4\right)}{3\left(x-1\right)\left(x+4\right)}\)
\(\Leftrightarrow-3x^2+36x+12=36x-36+12x+48\)
\(\Leftrightarrow-3x^2+36x+12-48x-12=0\)
\(\Leftrightarrow3x\left(x+4\right)=0\)
=>x=0(nhận) hoặc x=-4(loại)
a) x(4x + 2) = 4x2 - 14
⇔ 4x2 + 2x = 4x2 - 14
⇔ 4x2 - 4x2 + 2x = -14
⇔ 2x = -14
⇔ x = -7
Vậy tập nghiệm S = ......
b) (x2 - 9)(2x - 1) = 0
⇔ x2 - 9 = 0 hoặc 2x - 1 = 0
⇔ x2 = 9 hoặc 2x = 1
⇔ x = 3 hoặc -3 hoặc x = \(\dfrac{1}{2}\)
Vậy .......
c) \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{x^2-4}\)
⇔ \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{\left(x-2\right)\left(x+2\right)}\)
ĐKXĐ: x - 2 ≠ 0 và x + 2 ≠ 0
⇔ x ≠ 2 và x ≠ -2MSC (mẫu số chung): (x - 2)(x + 2)Quy đồng mẫu hai vế và khử mẫu ta được:3x + 6 + 4x - 8 = x - 12⇔ 3x + 4x - x = 8 - 6 - 12⇔ 6x = -10⇔ x = \(-\dfrac{5}{3}\) (nhận)Vậy ........\(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow\frac{2x^2+4}{x^2-4}=\frac{2x^2+4}{x^2-4}\)
Vậy phương trình này có vô số nghiệm x thỏa mãn trừ x khác 2 và -2