Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\frac{x+1}{2}+\frac{x-2}{4}=1-\frac{2\left(x-1\right)}{3}\)
=> \(\frac{6\left(x+1\right)}{12}+\frac{3\left(x-2\right)}{12}=\frac{12}{12}-\frac{8\left(x-1\right)}{12}\)
=> \(6\left(x+1\right)+3\left(x-2\right)=12-8\left(x-1\right)\)
=> \(6x+6+3x-6=12-8x+8\)
=> \(17x=20\)
=> \(x=\frac{20}{17}\)
b, Ta có : \(\frac{5x-1}{6}+x=\frac{6-x}{4}\)
=> \(\frac{5x-1+6x}{6}=\frac{6-x}{4}\)
=> \(4\left(11x-1\right)=6\left(6-x\right)\)
=> \(44x-4-36+6x=0\)
=> \(\)\(50x=40\)
=> \(x=\frac{4}{5}\)
c, Ta có : \(\frac{5\left(1-2x\right)}{3}+\frac{x}{2}=\frac{3\left(x-5\right)}{4}-2\)
=> \(\frac{20\left(1-2x\right)}{12}+\frac{6x}{12}=\frac{9\left(x-5\right)}{12}-\frac{24}{12}\)
=> \(20\left(1-2x\right)+6x=9\left(x-5\right)-24\)
=> \(20-40x+6x-9x+45+24=0\)
=> \(43x=89\)
=> \(x=\frac{89}{43}\)
1) \(3\left(x+4\right)-x^2-4x=3\left(x+4\right)-x\left(x+4\right)=\left(x+4\right)\left(3-x\right)\)
2) \(5x^2-5y^2-10x+10y=5\left(x^2-y^2\right)-10\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y\right)-10\left(x-y\right)=\left(x-y\right)\left(5x+5y-10\right)\)
3) \(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)
4) \(ax-bx-a^2+2ab-b^2=x\left(a-b\right)-\left(a^2-2ab+b^2\right)\)
\(=x\left(a-b\right)-\left(a-b\right)^2=\left(a-b\right)\left(x-a+b\right)\)
5) \(x^3-x^2-x+1=x^2\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x-1\right)\left(x+1\right)=\left(x-1\right)^2\left(x+1\right)\)
6) \(x^2+4x-y^2+4=x^2+4x+4-y^2=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
1) \(x^4+4=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
2) \(a^4+64=\left(a^2+8\right)-16a^2=\left(a^2+4a+8\right)\left(a^2-4a+8\right)\)
3) \(x^5+x+1\)
\(=\left(x^5-x^4+x^2\right)+\left(x^4-x^3+x\right)+\left(x^3-x^2+1\right)\)
\(=x^2\left(x^3-x^2+1\right)+x\left(x^3-x^2+1\right)+\left(x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
4) \(x^5+x-1\)
\(=\left(x^5+x^4-x^2\right)-\left(x^4+x^3-x\right)+\left(x^3+x^2-1\right)\)
\(=x^2\left(x^3+x^2-1\right)-x\left(x^3+x^2-1\right)+\left(x^3+x^2-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)
a) Ta có :
\(3x=3\left(x+2\right)\)
\(\Leftrightarrow3x=3x+2\)
\(\Leftrightarrow0=2\) ( vô lí )
Do đó pt đã cho vô nghiệm
b) Ta có \(\left|x\right|=-x^2-2\) (1)
Nhân xét : VT (1) : \(\left|x\right|\ge0\forall x\)
VP (1) : \(-x^2\le0\Leftrightarrow-x^2-2\le-2\forall x\)
Do đó : \(VT\ne VP\)
Vì vậy pt đã cho vô nghiệm
b: \(=\dfrac{x+5+x+x-5}{x\left(x+5\right)}=\dfrac{3x}{x\left(x+5\right)}=\dfrac{3}{x+5}\)
\(a,=-3x^3+x^2+9x^2-3x-12x+4=-3x^3+10x^2-15x+4\\ b,=\dfrac{x+5+x+x-5}{x\left(x+5\right)}=\dfrac{3x}{x\left(x+5\right)}=\dfrac{3}{x+5}\)