K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2020

\(a,Đk:1\le x\le4\)

Đặt \(y=\sqrt{4-x}+\sqrt{2x-2}\)Ta có: \(y^2=4-x+2x-2+2\sqrt{\left(4-x\right)\left(2x-2\right)}\)

\(\Leftrightarrow x+2+2\sqrt{\left(4-x\right)\left(2x-2\right)}=y^2\Leftrightarrow x+2\sqrt{\left(4-x\right)\left(2x-2\right)}=y^2-2\)

Phương trình trở thành: \(5+y^2-2=4y\)

\(\Leftrightarrow y^2-4y+3=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=3\end{cases}}\) ( Vì \(a+b+c=0\))

  • \(y=1.\) Ta có: \(\sqrt{4-x}+\sqrt{2x-2}=1\Leftrightarrow\sqrt{2x-2}=1-\sqrt{4-x}\)

\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{4-x}\ge0\\2x-2=\left(1-\sqrt{4-x}\right)^2\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le1\\2x-2=1-2\sqrt{4-x}+4-x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}0\le4-x\le1\\2\sqrt{4-x}=7-3x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}3\le x\le4;7-3x\ge0\\4\left(4-x\right)=\left(7-3x\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\varnothing\\4\left(4-x\right)=\left(7-3x\right)^2\end{cases}}\) \(\Leftrightarrow x\in\varnothing\)

  • \(y=3\)Ta có: \(\sqrt{4-x}+\sqrt{2x-2}=3\Leftrightarrow\sqrt{2x-2}=3-\sqrt{4-x}\)

\(\Leftrightarrow\hept{\begin{cases}3-\sqrt{4-x}\ge0\\2x-2=\left(3-\sqrt{4-x}\right)^2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le3\\2x-2=9-6\sqrt{4-x}+4-x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le3\\2\sqrt{4-x}=5-x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}0\le4-x\le9;5-x\ge0\\4\left(4-x\right)=\left(5-x\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-5\le x\le4\\x^2-6x+9=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}-5\le x\le4\\\left(x-3\right)^2=0\end{cases}}\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất là \(x=3\)

(Làm xong hoa mắt :((

9 tháng 12 2019

Dùng liên hợp.

pt <=> \(\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(1+\sqrt{3}\right)\)

\(-3\left(x-1\right)\left(x-\sqrt{3}\right)\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}\right)\)

\(+2\left(x-1\right)\left(x-\sqrt{2}\right)\left(\sqrt{3}+1\right)\left(\sqrt{3}+\sqrt{2}\right)=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left[\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)-\left(x-1\right)\left(\sqrt{2}+\sqrt{3}\right)\right]\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left[\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)-\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)\right]\)

\(=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(x+\sqrt{3}\right)\left(1-\sqrt{2}\right)\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left(x+1\right)\left(\sqrt{2}-\sqrt{3}\right)=3x-1\)

<=> \(3-x^2-2\left(1-x^2\right)=3x-1\)

<=> \(x^2-3x+2=0\) phương trình bậc 2.

Em làm tiếp nhé!

16 tháng 10 2018

ĐKXĐ: \(x>0\)

Ta có:

\(-\sqrt{x}-2\left(x-\frac{1}{x}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)

\(\Leftrightarrow-\sqrt{x}+\frac{1}{2x\sqrt{x}}=\frac{1}{2x^3}+2x-\frac{2}{x}\)

\(\frac{\Leftrightarrow1}{2x\sqrt{x}}-\sqrt{x}=2\left(x-\frac{1}{x}+\frac{1}{4x^3}\right)\)

Đặt : \(\frac{1}{2x\sqrt{x}}-\sqrt{x}=a\Rightarrow a^2=x-\frac{1}{x}+\frac{1}{4x^3}\)

Khi đó pt đã cho trở thành:

\(a=2a^2\Leftrightarrow\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)

+) a = 0\(\Rightarrow x=\frac{1}{\sqrt{2}}\)

Tương tự

30 tháng 8 2021

a, \(\sqrt{\left(2x+3\right)^2}=x+1\)

\(\Leftrightarrow\left|2x+3\right|=x+1\)

TH1: \(\left\{{}\begin{matrix}2x+3=x+1\\2x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x\ge-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.

Vậy phương trình vô nghiệm.

TH2: \(\left\{{}\begin{matrix}-2x-3=x+1\\2x+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\x< -\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.

30 tháng 8 2021

b, 

a, \(\sqrt{\left(2x-1\right)^2}=x+1\)

\(\Leftrightarrow\left|2x-1\right|=x+1\)

TH1: \(\left\{{}\begin{matrix}2x-1=x+1\\2x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x\ge\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=2\)

TH2: \(\left\{{}\begin{matrix}-2x+1=x+1\\2x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=0\)

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok

đặt \(\sqrt{2x-x^2}=a\)

phương trình trở thành:

\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)

đến đây thì khai triển đi

22 tháng 8 2017

1/ Đặt  \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x}=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{a}{b}-1=0\\a^2-b^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab=a+b\\\left(a+b\right)\left(a-b\right)=1\end{cases}}\)

Tới đây b làm nốt nhé

21 tháng 1 2020

\(a,\sqrt{5x^2+10x+1}=7-\left(x^2+2x\right)\)

Đặt: \(\sqrt{5x^2+10x+1}=t\ge0\) ta được:

\(t=7-\frac{t^2-1}{5}\)

\(\Rightarrow t^2+5t-36=0\)

\(\Rightarrow t=4\)

\(\Rightarrow\hept{\begin{cases}x_1=-3\\x_2=1\end{cases}}\)

Vậy .................