Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 7 x 2 – 5x = 0 ⇔ x(7x – 5) = 0 ⇔ x = 0 hoặc 7x – 5 = 0
7x – 5 = 0 ⇔ x = 5/7 .
Vậy phương trình có hai nghiệm x 1 = 0, x 2 = 5/7
\(\Leftrightarrow\left(x^4+5x^2+6\right)\left(x^4+5x^2+4\right)-24\)
Đặt \(x^4+5x^2+6=t\)
\(t\left(t-2\right)-24=t^2-2t-24\)
\(\Leftrightarrow t^2-2t+1-25=\left(t-1\right)^2-5^2=\left(t-6\right)\left(t+4\right)>0\)
TH1 : \(\left\{{}\begin{matrix}t-6>0\\t+4>0\end{matrix}\right.\Leftrightarrow t>6\)
TH2 : \(\left\{{}\begin{matrix}t-6< 0\\t+4< 0\end{matrix}\right.\)<=> t < -4
Theo cách đặt \(x^4+5x^2+6>6\Leftrightarrow x^2\left(x^2+5\right)>0\)* luôn đúng *
\(x^4+5x^2+6< -4\Leftrightarrow x^4+5x^2+10< 0\)
\(\Leftrightarrow x^4+\dfrac{2.5}{2}x^2+\dfrac{25}{4}+\dfrac{15}{4}< 0\Leftrightarrow\left(x^2+\dfrac{5}{2}\right)^2+\dfrac{15}{4}< 0\)( vô lí )
Cậu làm thiếu rất nhiều bước và có thể người khác sẽ khó hiểu. Xem cách trình bày của mình nè.
a) 1,2x3 – x2 – 0,2x = 0
⇔ 0,2x.(6x2 – 5x – 1) = 0
Giải (1): 6x2 – 5x – 1 = 0
có a = 6; b = -5; c = -1
⇒ a + b + c = 0
⇒ (1) có hai nghiệm x1 = 1 và x2 = c/a = -1/6.
Vậy phương trình ban đầu có tập nghiệm
b) 5x3 – x2 – 5x + 1 = 0
⇔ x2(5x – 1) – (5x – 1) = 0
⇔ (x2 – 1)(5x – 1) = 0
⇔ (x – 1)(x + 1)(5x – 1) = 0
Vậy phương trình có tập nghiệm
5x3 – x2 – 5x + 1 = 0
⇔ x2(5x – 1) – (5x – 1) = 0
⇔ (x2 – 1)(5x – 1) = 0
⇔ (x – 1)(x + 1)(5x – 1) = 0
Vậy phương trình có tập nghiệm
TH1: \(\left\{{}\begin{matrix}2x-7\ge0\\2x-7< x^2+2x+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{2}\\x^2>-9\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{7}{2}\)
TH2: \(\left\{{}\begin{matrix}2x-7< 0\\7-2x< x^2+2x+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{7}{2}\\x^2+4x-5>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{7}{2}\\\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1< x< \dfrac{7}{2}\\x< -5\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)
Đáp án B
Phương trình x 2 - 5 x + 2 = 0 có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có:
Phương trình x 2 − 5x + 2 = 0 có = ( − 5 ) 2 – 4.1.2 = 17 > 0 nên phương trình có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = − b a x 1 . x 2 = c a ⇔ x 1 + x 2 = 5 x 1 . x 2 = 2
Ta có
A = x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 – 2 x 1 . x 2 = 5 2 – 2 . 2 = 21
Đáp án: B