Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)
\(ĐK:x\ge5\)
BPT \(\Leftrightarrow x^2-7x+2-2\sqrt{x^2-7x+10}< 0\)
\(\Leftrightarrow t^2-8-2t< 0\left(t=\sqrt{x^2-7x+10}\ge0\right)\)
\(\Leftrightarrow\left(t+2\right)\left(t-4\right)< 0\)
\(\Leftrightarrow-2< t< 4\Leftrightarrow-2< \sqrt{x^2-7x+10}< 4\)
\(\Leftrightarrow\sqrt{x^2-7x+10}< 4\Leftrightarrow x^2-7x-6< 0\)
\(\Leftrightarrow\orbr{\begin{cases}5\le x< \frac{7+\sqrt{73}}{2}\\\frac{7-\sqrt{73}}{2}< x\le2\end{cases}}\)
Chúc bạn học tốt !!!
Đặt H \(=x^4-5x^3+7x^2-6\)
Gỉa sử : \(H=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
\(=x^4+cx^3+dx^2+ax^{3\:}+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)
\(\Leftrightarrow\hept{\begin{cases}a+c=-5\\ac+b+d=7\\ad+bc=0\end{cases}}\)
\(\left\{bd=6\right\}\)
\(\Leftrightarrow\hept{\begin{cases}a=-3\\b=3\\c=-2\end{cases}}\)
\(\left\{d=-2\right\}\)
\(\Rightarrow H=\left(x^2-3x+3\right)\left(x^2-2x-2\right)\)
Chúc bạn học tốt !!!
1 x mũ 2 + 4xy + 4y mũ 2 = x^2 + 4xy + 4y^2 =(2y+x)^2
2, 4x mũ 2 - 36y mũ 2 =4x^2 -36y^2 = -4 (3y-x) (3y+x)
1.a)|−7x|=3x+16
Vì |-7x| ≥ 0 nên 3x+16 ≥ 0 ⇔ x ≥ \(\dfrac{-16}{3}\) (*)
Với đk (*), ta có: |-7x|=3x+16
\(\left[\begin{array}{} -7x=3x+16\\ -7x=-3x-16 \end{array} \right.\) ⇔ \(\left[\begin{array}{} -7x-3x=16\\ -7x+3x=-16 \end{array} \right.\)
⇔ \(\left[\begin{array}{} x=-1,6 (t/m)\\ x= 4 (t/m) \end{array} \right.\)
b) \(\dfrac{x-1}{x+2}\) - \(\dfrac{x}{x-2}\) = \(\dfrac{5x-8}{x^2-4}\)
⇔ \(\dfrac{(x-1)(x-2)}{x^2-4}\) - \(\dfrac{x(x+2)}{x^2-4}\) = \(\dfrac{5x-8}{x^2-4}\)
⇒ x2 - 2x - x + 2 - x2 - 2x = 5x - 8
⇔ -5x - 5x = -8 - 2
⇔ -10x = -10
⇔ x=1
2.7x+5 < 3x−11
⇔ 7x - 3x < -11 - 5
⇔ 4x < -16
⇔ x < -4
bạn tự biểu diễn trên trục số nha !
b. \(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
-Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)
ĐKXĐ: \(x\ge5\)
Ta có BĐT \(\Leftrightarrow x^2-2\sqrt{x^2-7x+10}-7x+2< 0\)
\(\Leftrightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1-9< 0\)
\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-1\right)^2-9< 0\)
\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-4\right)\left(\sqrt{x^2-7x+10}-2\right)< 0\)
Vì \(\sqrt{x^2-7x+10}\ge0\Rightarrow\sqrt{x^2-7x+10}< 4\)
\(\Leftrightarrow x^2-7x+10< 16\)
\(\Leftrightarrow x^2-7x-6< 0\)
Chúc bạn học tốt !!!
\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)
\(\Rightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1< 9\)
\(\Rightarrow\left(\sqrt{x^2-7x+10}-1\right)^2< 9\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}-1< 3\\\sqrt{x^2-7x+10}-1< -3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}< 4\\\sqrt{x^2-7x+10}< -2\left(L\right)\end{cases}}\)
\(\Rightarrow x^2-7x+10=16\)
\(\Rightarrow x^2-2x-5x+10=16\)
\(\Rightarrow\left(x-2\right)\left(x-5\right)=16\)
...........................