K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2021

\(\dfrac{3}{x-2}\ge\dfrac{5}{2x-1}\)

ĐKXĐ: x ≠ 2; \(x\ne\dfrac{1}{2}\)

\(\dfrac{3}{x-2}\ge\dfrac{5}{2x-1}\)

\(\Leftrightarrow\dfrac{3}{x-2}-\dfrac{5}{2x-1}\ge0\)

\(\Leftrightarrow\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{\left(x-2\right)\left(2x-1\right)}\ge0\)

\(\Leftrightarrow\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}\ge0\)

*Với: \(\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}=0\)

=> x + 7 = 0

<=> x =-7

*Với \(\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}>0\) (1)

Ta lâpj bảng xét dấu:

x

 

-7

 

1/2

 

2

 

X + 7

-

0

+

|

+

|

+

2x – 1

-

|

-

0

+

|

+

X - 2

-

|

-

|

-

0

+

BĐT (1)

-

0

+

||

-

||

+

 

Từ bảng trên ta có thể thấy: \(\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}>0\) khi -7 < x < 1/2 hoăcj x > 2

Vayj:.............

NV
16 tháng 4 2022

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

NV
16 tháng 4 2022

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

17 tháng 2 2022

\(\dfrac{3}{x-2}\ge\dfrac{5}{2x-1}.\\ \Leftrightarrow\dfrac{3}{x-2}-\dfrac{5}{2x-1}\ge0.\\ \Leftrightarrow\dfrac{6x-3-5x+10}{\left(x-2\right)\left(2x-1\right)}\ge0.\\ \Leftrightarrow\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}\ge0.\)

Ta có:

\(x+7=0.\Leftrightarrow x=-7.\\ x-2=0.\Leftrightarrow x=2.\\ 2x-1=0.\Leftrightarrow x=\dfrac{1}{2}.\)

Đặt \(f\left(x\right)=\dfrac{x+7}{\left(x-2\right)\left(2x-1\right)}.\)

Bảng xét dấu:

\(x\)              \(-\infty\)                 \(-7\)                  \(\dfrac{1}{2}\)                 \(2\)                 \(+\infty\)

\(x+7\)                     -          0           +        |       +          |         +

\(x-2\)                     -           |           -         |       -           0        +

\(2x-1\)                   -           |           -         0      +           |         +

\(f\left(x\right)\)                      -          0           +        ||       -           ||         +

Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in[-7;\dfrac{1}{2})\cup\left(2;+\infty\right).\)

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

28 tháng 1 2022

1) \(ĐK:x\ne2\) 

Nếu \(x>2\) 

BPT ⇔ \(x^2-2x+5-\left(x-1\right)\left(x-2\right)\ge0\) ⇔ \(x^2-2x+5-\left(x^2-3x+3\right)\ge0\)

\(x+2\ge0\) ⇔\(x\ge-2\) ⇒ Lấy \(x\ge2\)

Nếu \(x< 2\)

BPT ⇔\(\dfrac{-\left(x^2-2x+5\right)}{x-2}-x+1\ge0\) ⇔\(-x^2+2x-5-\left(x-1\right)\left(x-2\right)\ge0\)

\(-x^2+2x-5-x^2+3x-2\ge0\)

\(-2x^2+5x-7\ge0\)

\(x^2-\dfrac{5}{2}x+\dfrac{7}{2}\le0\)

\(\left(x-\dfrac{5}{4}\right)^2\le\dfrac{11}{4}\)

\(\left[{}\begin{matrix}x-\dfrac{5}{4}\le\dfrac{11}{4}\\x-\dfrac{5}{4}\le\dfrac{-11}{4}\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x\le4\\x\le\dfrac{-3}{2}\end{matrix}\right.\) ⇔ \(x\le\dfrac{-3}{2}\) 

S= [2;+∞)U(-∞;\(\dfrac{-3}{2}\)]

28 tháng 1 2022

2) \(ĐK:x\ne-1\) 

Nếu \(x>-1\) 

BPT ⇔ \(2x-3-2\left(x+1\right)< 0\) ⇔\(2x-3-2x-2< 0\)

 ⇔\(-5< 0\) ( luôn đúng với mọi \(x>-1\))

Nếu \(x< -1\)

BPT⇔\(\dfrac{-\left(2x-3\right)}{x+1}-2< 0\) ⇔\(-\left(2x-3\right)-2\left(x+1\right)< 0\) ⇔\(-4x+1< 0\) ⇔ \(x>\dfrac{-1}{4}\)

Vậy S=....

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

b/

\(\frac{3x+5}{2x^2-5x+3}\geq 0\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x+5\geq 0\\ 2x^2-5x+3>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x+5\leq 0\\ 2x^2-5x+3<0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq \frac{-5}{3}\\ x>\frac{3}{2}(\text{hoặc}) x< 1\end{matrix}\right.\\ \left\{\begin{matrix} x\leq \frac{-5}{3}\\ 1< x< \frac{3}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} x>\frac{3}{2}\\ \frac{-5}{3}\leq x< 1\end{matrix}\right.\ \)

c/

$2x^3+x+3>0$

$\Leftrightarrow 2x^2(x+1)-2x(x+1)+3(x+1)>0$

$\Leftrightarrow (x+1)(2x^2-2x+3)>0$

$\Leftrightarrow (x+1)[x^2+(x-1)^2+2]>0$

$\Leftrightarrow x+1>0$

$\Leftrightarrow x>-1$

1: \(\Leftrightarrow\left[{}\begin{matrix}2x-3>5\\2x-3< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

2: \(\Leftrightarrow-4< =2x-1< =4\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1>=-4\\2x-1< =4\end{matrix}\right.\Leftrightarrow\dfrac{-3}{2}< =x< =\dfrac{5}{2}\)

16 tháng 3 2021

1.

ĐK: \(x\ne7;x\ne-1;x\ne3\)

\(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\left(1\right)\)

TH1: \(x< -1\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\ge x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\ge x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\ge0\)

\(\Leftrightarrow\) Bất phương trình đúng với mọi \(x< -1\)

TH2: \(-1< x< 3\)

\(\left(1\right)\Leftrightarrow\left(3-x\right)\left(2x-5\right)\ge\left(7-x\right)\left(x+1\right)\)

\(\Leftrightarrow-2x^2+11x-15\ge-x^2+6x+7\)

\(\Leftrightarrow-x^2+5x-22\ge0\)

\(\Rightarrow\) vô nghiệm

TH3: \(3< x< 7\)

Khi đó \(\dfrac{2x-5}{x^2-6x-7}\le0\)\(\dfrac{1}{x-3}>0\)

\(\Rightarrow\) Bất phương trình đúng với mọi \(3< x< 7\)

TH4: \(x>7\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\le x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\le x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\le0\)

\(\Rightarrow\) vô nghiệm

Vậy ...

Các bài kia tương tự, chứ giải ra mệt lắm.

15 tháng 7 2023

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

4: =>2x-3>5 hoặc 2x-3<-5

=>x>4 hoặc x<-1

5: =>-4<=2x-1<=4

=>-3/2<=x<=5/2