K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7

A B C D O E F K M G

a/

\(\widehat{CBD}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow BD\perp BC\)

\(OA\perp BC\) (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì đường nối điểm đó với tâm vuông góc với dây cung nối 2 tiếp điểm)

=> BD//OA (Cùng vuông góc với BC)

b/

BD//OA (cmt) => DE//OA (1)

Xét tg vuông ODE và tg vuông COA có

\(\widehat{EDO}=\widehat{AOC}\) (góc đồng vị)

OD=OC (bán kính (O))

=> tg ODE = tg COA (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)

=> DE=OA (2)

Từ (1) và (2) => AEDO là hình bình hành (Tứ giác có 1 cặp cạnh đối // và băng nhau là hbh)

=> AE//CD (cạnh đối hbh) \(\Rightarrow\widehat{AEO}=\widehat{EOD}=90^o\) (góc so le trong)

Ta có E; B; C cùng nhìn OA dưới 3 góc bằng nhau và bằng \(90^o\)

=> E; B; C cùng nằm trên đường tròn đường kính OA => O; C; A; E; B thuộc 1 đường tròn)

c/ AD cắt OE và BK lần lượt tại G và M

\(BK\perp CD\left(gt\right);OE\perp CD\left(gt\right)\) => BK//OE

\(\Rightarrow\dfrac{BM}{EG}=\dfrac{KM}{OG}\) 

Mà AEDO là hbh (cmt) => EG=OG (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) 

=> BM=KM

 

20 tháng 9 2021
Tui ko bt lm đâu há há

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

b: Xét ΔOBA vuông tại B có BH là đường cao

nên OH*OA=OB^2=OA^2-AB^2

1: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

2: Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD

BC\(\perp\)CD

BC\(\perp\)OA

Do đó: CD//OA

3: Gọi giao điểm của OE và AD là H

OE\(\perp\)AD

nên OE\(\perp\)AD tại H

Gọi giao điểm của BC và OA là K

OA là đường trung trực của BC

=>OA\(\perp\)BC tại trung điểm của BC

=>OA\(\perp\)BC tại K và K là trung điểm của BC

Xét ΔOBA vuông tại B có BK là đường cao

nên \(OK\cdot OA=OB^2\)

Xét ΔOHA vuông tại H và ΔOKE vuông tại K có

\(\widehat{HOA}\) chung

Do đó: ΔOHA đồng dạng với ΔOKE

=>\(\dfrac{OH}{OK}=\dfrac{OA}{OE}\)

=>\(OH\cdot OE=OA\cdot OK=OB^2\)

=>\(OH\cdot OE=OD^2\)

=>\(\dfrac{OH}{OD}=\dfrac{OD}{OE}\)

Xét ΔOHD và ΔODE có

\(\dfrac{OH}{OD}=\dfrac{OD}{OE}\)

\(\widehat{HOD}\) chung

Do đó: ΔOHD đồng dạng với ΔODE

=>\(\widehat{OHD}=\widehat{ODE}=90^0\)

=>ED là tiếp tuyến của (O)

2 tháng 12 2023

Để giải câu c, ta sẽ sử dụng các kiến thức về góc nội tiếp và góc ngoại tiếp của đường tròn.

 

Vì AB và AC là hai tiếp tuyến của đường tròn (O), nên ta có:

∠OAB = ∠OCA (góc nội tiếp chắn cung AC)

∠OBA = ∠OAC (góc nội tiếp chắn cung AB)

 

Ta cũng biết rằng OA vuông góc với AB 

 

Do đó, ta có:

∠OAB = ∠OBA (cùng là góc ngoại tiếp chắn cung AB)

∠OCA = ∠OAC (cùng là góc ngoại tiếp chắn cung AC)

 

Từ đó, ta suy ra:

∠OAB = ∠OBA = ∠OCA = ∠OAC

 

Vậy tứ giác OBCA là tứ giác nội tiếp.

 

Theo định lý góc nội tiếp, ta có:

∠OBC = ∠OAC (góc chắn cung AC)

∠OCB = ∠OAB (góc chắn cung AB)

 

Vì ∠OAB = ∠OBA và ∠OBC = ∠OCB, nên ta có:

∠OBC = ∠OCB

 

Do đó, tam giác OBC là tam giác cân tại O.

 

Vì tam giác OBC là tam giác cân, nên đường trung tuyến BD của tam giác OBC là đường cao và đường phân giác của tam giác OBC.

 

Vậy, ta có:

BD ⊥ OC (đường cao của tam giác OBC)

BD là đường phân giác của ∠OBC (đường phân giác của tam giác OBC)

 

Do đó, ta có:

∠BDC = ∠OBC/2 (do BD là đường phân giác của ∠OBC)

 

Vì ∠OBC = ∠OCB, nên ta có:

∠BDC = ∠OCB/2

 

Vì ∠OCB = ∠OCA (cùng là góc ngoại tiếp chắn cung AC), nên ta có:

∠BDC = ∠OCA/2

 

Vậy, ta suy ra:

∠BDC = ∠OCA/2

 

Như vậy, ta có:

∠BDC = ∠OCA/2 = ∠OAC/2 (do ∠OCA = ∠OAC)

 

Do đó, CD song song với OA.

 

Tiếp theo, ta chứng minh rằng ED là tiếp tuyến của đường tròn (O).

 

Vì ∠OAB = ∠OBA và ∠OCA = ∠OAC, nên ta có:

∠OAB = ∠OBA = ∠OCA = ∠OAC

 

Vậy tứ giác OBCA là tứ giác nội tiếp.

 

Theo định lý góc nội tiếp, ta có:

∠OBC = ∠OAC (góc chắn cung AC)

∠OCB = ∠OAB (góc chắn cung AB)

 

Vì ∠OAB = ∠OBA và ∠OBC = ∠OCB, nên ta có:

∠OBC = ∠OCB

 

Do đó, tam giác OBC là tam giác cân tại O.

 

Vì tam giác OBC là tam giác cân, nên đường trung tuyến BD của tam giác OBC là đường cao và đường phân giác của tam giác OBC.

 

Vậy, ta có:

BD ⊥ OC (đường cao của tam giác OBC)

BD là đường phân giác của ∠OBC (đường phân giác của tam giác OBC)

 

Do đó, ta có:

∠BDC = ∠OBC/2 (do BD là đường phân giác của ∠OBC)

 

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

4 tháng 6 2015

chỉnh lại câu 1 tí:

1)
    + Xét tứ giác AEFD :  ADF +AEF = 90 +90 = 180
    Suy ra: Tứ giác AEFD nội tiếp được đường tròn 
    Suy ra:  EAF = EDF hay EAF = EDC
    + Xét tgAEF và tg EDC :  AEF = ECD = 90 VÀ EAF = EDC
    Suy ra: tgAEF ~  tgDCE =>  .AE /AF = CD/DE

2.

Tứ giác AEFD nội tiếp được đường tròn 
=>  EAF = EDF mặt khác  EAF = EDC mặt khác  : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG  suy ra tứ giác AEGH nội tiếp được đường tròn =>  HGE = 90 
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.

3.

Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
    + Xét tam giác HGE :   và OH = OE = 1/2. HE => OH = OE = OG.
    + Xét tg OEK và tg OGK : 
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra  tgOEK =tg OGK (c – c – c) =>  KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).

6 tháng 12 2017

Câu c.

Gọi K là trung điểm của BH

Chỉ ra K là trực tâm của tam giác BMI

Chứng minh MK//EI

Chứng minh M là trung điểm của BE (t.c đường trung bình)