Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (cmt).
+ \(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)
+ MB = NC (gt).
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).
Xét tam giác ABC có: AB = AC (cmt).
\(\Rightarrow\) Tam giác ABC cân tại A.
b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)
Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{}\) (đối đỉnh).
\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)
Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:
+ MB = NC (gt).
+ \(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)
\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).
c/ Tam giác MBH = Tam giác NCK (cmt).
\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).
Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).
\(\Rightarrow\) Tam giác OMN tại O.
6:
\(=\dfrac{1}{3}+\dfrac{3}{7}+\dfrac{4}{21}-\dfrac{3}{5}-\dfrac{2}{9}-\dfrac{8}{45}-\dfrac{2}{81}\)
\(=\dfrac{7+9+4}{21}+\dfrac{-27-10-8}{45}-\dfrac{2}{81}\)
\(=\dfrac{20}{21}-1-\dfrac{2}{81}\)
\(=\dfrac{-1}{21}-\dfrac{2}{81}=\dfrac{-41}{567}\)
Ta có: \(3x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{3}\Rightarrow\dfrac{x}{20}=\dfrac{y}{15}\)
\(2y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{2}\Rightarrow\dfrac{y}{15}=\dfrac{z}{6}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{6}=\dfrac{x+z}{20+6}=\dfrac{52}{26}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=20.2=40\\y=15.2=30\\z=6.2=12\end{matrix}\right.\)
Bài 6:
a: \(\left|x+\dfrac{1}{2}\right|>=0\forall x;\left|y-\dfrac{3}{4}\right|>=0\forall y;\left|z-1\right|>=0\forall z\)
Do đó: \(\left|x+\dfrac{1}{2}\right|+\left|y-\dfrac{3}{4}\right|+\left|z-1\right|>=0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\y-\dfrac{3}{4}=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{3}{4}\\z=1\end{matrix}\right.\)
b: \(\left|x-\dfrac{3}{4}\right|>=0\forall x;\left|\dfrac{2}{5}-y\right|>=0\forall y;\left|x-y+z\right|>=0\forall x,y,z\)
Do đó: \(\left|x-\dfrac{3}{4}\right|+\left|\dfrac{2}{5}-y\right|+\left|x-y+z\right|>=0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{3}{4}=0\\\dfrac{2}{5}-y=0\\x-y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=\dfrac{2}{5}\\z=-x+y=-\dfrac{3}{4}+\dfrac{2}{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=\dfrac{2}{5}\\z=-\dfrac{7}{20}\end{matrix}\right.\)
c: \(\left|x-\dfrac{2}{3}\right|>=0\forall x;\left|x+y+\dfrac{3}{4}\right|>=0\forall x,y;\left|y-z-\dfrac{5}{6}\right|>=0\forall y,z\)
Do đó: \(\left|x-\dfrac{2}{3}\right|+\left|x+y+\dfrac{3}{4}\right|+\left|y-z-\dfrac{5}{6}\right|>=0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{2}{3}=0\\x+y+\dfrac{3}{4}=0\\y-z-\dfrac{5}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-x-\dfrac{3}{4}=-\dfrac{2}{3}-\dfrac{3}{4}\\z=y-\dfrac{5}{6}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{17}{12}\\z=-\dfrac{17}{12}-\dfrac{10}{12}=-\dfrac{27}{12}=-\dfrac{9}{4}\end{matrix}\right.\)