Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ sửa đề bài là \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\)
bình phương 2 vế ta có:
\(25x^4+4x^2+3x=\left(x+3\right)^25x^2+4\)
\(25x^4+4x^2+3x=x^2+9.5x^2+4\)
\(25x^4+3x=9.5x^2\)
\(5x^2+3x=9\)
\(5x^2+3x-9\)
Ủng hộ cách khác :3
\(x^2+5x-\sqrt{x^2+5x+4}=-2\)
\(\Leftrightarrow x^2+5x+2=\sqrt{x^2+5x+4}\)
Đặt\(\sqrt{x^2+5x+4}=t\) . Phương trình trở thành :
\(t^2-2=t\)
\(\Leftrightarrow t^2-t-2=0\)
\(\Leftrightarrow\left(t+1\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t+1=0\\t-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)
Với \(t=-1\) :
\(\Leftrightarrow\sqrt{x^2+5x+4}=-1\)
\(\Rightarrow\) Phương trình vô nghiệm .
Với \(t=2\) :
\(\Leftrightarrow\sqrt{x^2+5x+4}=2\)
\(\Leftrightarrow x^2+5x=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(S=\left\{-5;0\right\}\)
Wish you study well !!
ta có
\(2A=\left(\sqrt{x^2-5x+14}-\sqrt{x^2-5x+10}\right)\left(\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}\right)\)
⇔ 2A=x2-5x+14-x2+5x-10
⇔2A= 4
⇔ A=2
1/ Đặt \(\sqrt{5x-x^2}=a\ge0\)
Thì ta có:
\(a-2a^2+6=0\)
\(\Leftrightarrow\left(2-a\right)\left(2a+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-\dfrac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{5x-x^2}=2\)
\(\Leftrightarrow x^2-5x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y+xy=3\\\sqrt{x}+\sqrt{y}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x}+\sqrt{y}\right)^2+xy-2\sqrt{xy}=3\left(1\right)\\\sqrt{x}+\sqrt{y}=2\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\Leftrightarrow xy-2\sqrt{xy}+1=0\)
\(\Leftrightarrow\sqrt{xy}=1\)
\(\Leftrightarrow\sqrt{y}=\dfrac{1}{\sqrt{x}}\) thế vô (2) ta được
\(\sqrt{x}+\dfrac{1}{\sqrt{x}}=2\)
\(\Leftrightarrow x-2\sqrt{x}+1=0\)
\(\Rightarrow x=1\)
\(\Rightarrow y=1\)
c: =>(x+2)(x+3)(x-5)(x-6)=180
=>(x^2-3x-10)(x^2-3x-18)=180
=>(x^2-3x)^2-28(x^2-3x)=0
=>x(x-3)(x-7)(x+4)=0
=>\(x\in\left\{0;3;7;-4\right\}\)
c: =>(x-3)(x+2)(2x+1)(3x-1)=0
=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)
Mik đăng câu hỏi mà ko thấy ai trả lời hết, với lại h mik giải được rồi nên đăng lên có ai tìm bài này thì có đáp án ha ( mấy CTV đừng hiểu lầm nhé)
a) \(x^2-13x+50=4\sqrt{x-3}\)
ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow x^2-13x+50-4\sqrt{x-3}=0\)
\(\Leftrightarrow x^2-14x+x+49-3-+4-4\sqrt{x-3}=0\)
\(\Leftrightarrow(x^2-14x+49)+(x-3-4\sqrt{x-3}+4)=0\)
\(\Leftrightarrow\left(x-7\right)^2+\left(\sqrt{x-3}-2\right)^2=0\)
\(\Leftrightarrow\left(x-7\right)^2=\left(\sqrt{x-3}-2\right)^2\)
\(\Leftrightarrow x-7=-\sqrt{x-3}+2\)
\(\Leftrightarrow x-9=-\sqrt{x-3}\)
\(\Leftrightarrow x^2-18x+81=x-3\)
\(\Leftrightarrow x^2-19x+84=0\)
\(\Leftrightarrow\left(x+12\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-12=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)
Vậy \(x\in\left\{7;12\right\}\)
\(b)\dfrac{4x}{x^2-5x+6}+\dfrac{3x}{x^2-7x+6}=6\)
ĐKXĐ: \(x\ne1,2,3,6\)
Đặt \(t=x^2-6x+6\)
pt \(\Leftrightarrow\dfrac{4x}{t+x}+\dfrac{3x}{t-x}=6\)
\(\Leftrightarrow\dfrac{4x\left(t-x\right)+3x\left(t+x\right)}{\left(t+x\right)\left(t-x\right)}=6\)
\(\Leftrightarrow\dfrac{7tx-x^2}{t^2-x^2}=6\)
\(\Leftrightarrow7tx-x^2=6t^2-6x^2\)
\(\Leftrightarrow-6t^2+7xt+5x^2=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)\left(t-\dfrac{5}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\t-\dfrac{5}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2-6x+6-\dfrac{5}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2-6x+\dfrac{13}{3}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{9+\sqrt{42}}{3}\\x=\dfrac{9-\sqrt{42}}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{-1}{2};\dfrac{9\pm\sqrt{42}}{3}\right\}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+5x+12}=a>0\\\sqrt{2x^2+3x+2}=b>0\end{matrix}\right.\) \(\Rightarrow x+5=\dfrac{a^2-b^2}{2}\)
Phương trình trở thành:
\(a+b=\dfrac{a^2-b^2}{2}\)
\(\Leftrightarrow\left(a-b-2\right)\left(a+b\right)=0\)
\(\Leftrightarrow a-b-2=0\) (do \(a+b>0\))
\(\Leftrightarrow a=b+2\)
\(\Leftrightarrow\sqrt{2x^2+5x+12}=\sqrt{2x^2+3x+2}+2\)
\(\Leftrightarrow2x^2+5x+12=2x^2+3x+6+4\sqrt{2x^2+3x+2}\)
\(\Leftrightarrow x+3=2\sqrt{2x^2+3x+2}\) (\(x\ge-3\))
\(\Leftrightarrow x^2+6x+9=4\left(2x^2+3x+2\right)\)
\(\Leftrightarrow7x^2+6x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\)
\(5x+\sqrt{5x-x^2}=x^2+6\) (ĐK: \(5x-x^2\ge0\Leftrightarrow x\left(5-x\right)\ge0\Leftrightarrow0\le x\le5\))
\(\Leftrightarrow5x-x^2+\sqrt{5x-x^2}-6=0\)
Đặt \(t=\sqrt{5x-x^2}\)(ĐK: \(t\ge0\))
\(\Rightarrow t^2+t-6=0\)
\(\Leftrightarrow t^2-2t+3t-6=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=-3\end{cases}}\)
t= -3 loại vì không thích hợp với điều kiện
\(\Rightarrow x^2-5x+4=0\)
\(\Leftrightarrow x^2-x-4x+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)