K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

\(5x+\sqrt{5x-x^2}=x^2+6\) (ĐK: \(5x-x^2\ge0\Leftrightarrow x\left(5-x\right)\ge0\Leftrightarrow0\le x\le5\))

\(\Leftrightarrow5x-x^2+\sqrt{5x-x^2}-6=0\)

Đặt \(t=\sqrt{5x-x^2}\)(ĐK: \(t\ge0\))

\(\Rightarrow t^2+t-6=0\)

\(\Leftrightarrow t^2-2t+3t-6=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=-3\end{cases}}\)

t= -3 loại vì không thích hợp với điều kiện

\(\Rightarrow x^2-5x+4=0\)

\(\Leftrightarrow x^2-x-4x+4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

17 tháng 8 2020

mình nghĩ sửa đề bài là  \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\) 

15 tháng 8 2019

bình phương 2 vế ta có:

\(25x^4+4x^2+3x=\left(x+3\right)^25x^2+4\)

\(25x^4+4x^2+3x=x^2+9.5x^2+4\)

\(25x^4+3x=9.5x^2\)

\(5x^2+3x=9\)

\(5x^2+3x-9\)

11 tháng 7 2018

Ủng hộ cách khác :3

\(x^2+5x-\sqrt{x^2+5x+4}=-2\)

\(\Leftrightarrow x^2+5x+2=\sqrt{x^2+5x+4}\)

Đặt\(\sqrt{x^2+5x+4}=t\) . Phương trình trở thành :

\(t^2-2=t\)

\(\Leftrightarrow t^2-t-2=0\)

\(\Leftrightarrow\left(t+1\right)\left(t-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t+1=0\\t-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)

Với \(t=-1\) :

\(\Leftrightarrow\sqrt{x^2+5x+4}=-1\)

\(\Rightarrow\) Phương trình vô nghiệm .

Với \(t=2\) :

\(\Leftrightarrow\sqrt{x^2+5x+4}=2\)

\(\Leftrightarrow x^2+5x=0\)

\(\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(S=\left\{-5;0\right\}\)

Wish you study well !!

11 tháng 7 2018

thank

22 tháng 10 2018

ta có

\(2A=\left(\sqrt{x^2-5x+14}-\sqrt{x^2-5x+10}\right)\left(\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}\right)\)

⇔ 2A=x2-5x+14-x2+5x-10

⇔2A= 4

⇔ A=2

27 tháng 8 2017

1/ Đặt \(\sqrt{5x-x^2}=a\ge0\)

Thì ta có:

\(a-2a^2+6=0\)

\(\Leftrightarrow\left(2-a\right)\left(2a+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-\dfrac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{5x-x^2}=2\)

\(\Leftrightarrow x^2-5x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

27 tháng 8 2017

\(\left\{{}\begin{matrix}x+y+xy=3\\\sqrt{x}+\sqrt{y}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x}+\sqrt{y}\right)^2+xy-2\sqrt{xy}=3\left(1\right)\\\sqrt{x}+\sqrt{y}=2\left(2\right)\end{matrix}\right.\)

\(\Rightarrow\left(1\right)\Leftrightarrow xy-2\sqrt{xy}+1=0\)

\(\Leftrightarrow\sqrt{xy}=1\)

\(\Leftrightarrow\sqrt{y}=\dfrac{1}{\sqrt{x}}\) thế vô (2) ta được

\(\sqrt{x}+\dfrac{1}{\sqrt{x}}=2\)

\(\Leftrightarrow x-2\sqrt{x}+1=0\)

\(\Rightarrow x=1\)

\(\Rightarrow y=1\)

c: =>(x+2)(x+3)(x-5)(x-6)=180

=>(x^2-3x-10)(x^2-3x-18)=180

=>(x^2-3x)^2-28(x^2-3x)=0

=>x(x-3)(x-7)(x+4)=0

=>\(x\in\left\{0;3;7;-4\right\}\)

c: =>(x-3)(x+2)(2x+1)(3x-1)=0

=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)

11 tháng 10 2018

Mik đăng câu hỏi mà ko thấy ai trả lời hết, với lại h mik giải được rồi nên đăng lên có ai tìm bài này thì có đáp án ha ( mấy CTV đừng hiểu lầm nhé)

a) \(x^2-13x+50=4\sqrt{x-3}\)

ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow x^2-13x+50-4\sqrt{x-3}=0\)

\(\Leftrightarrow x^2-14x+x+49-3-+4-4\sqrt{x-3}=0\)

\(\Leftrightarrow(x^2-14x+49)+(x-3-4\sqrt{x-3}+4)=0\)

\(\Leftrightarrow\left(x-7\right)^2+\left(\sqrt{x-3}-2\right)^2=0\)

\(\Leftrightarrow\left(x-7\right)^2=\left(\sqrt{x-3}-2\right)^2\)

\(\Leftrightarrow x-7=-\sqrt{x-3}+2\)

\(\Leftrightarrow x-9=-\sqrt{x-3}\)

\(\Leftrightarrow x^2-18x+81=x-3\)

\(\Leftrightarrow x^2-19x+84=0\)

\(\Leftrightarrow\left(x+12\right)\left(x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-12=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

Vậy \(x\in\left\{7;12\right\}\)

11 tháng 10 2018

\(b)\dfrac{4x}{x^2-5x+6}+\dfrac{3x}{x^2-7x+6}=6\)

ĐKXĐ: \(x\ne1,2,3,6\)

Đặt \(t=x^2-6x+6\)

pt \(\Leftrightarrow\dfrac{4x}{t+x}+\dfrac{3x}{t-x}=6\)

\(\Leftrightarrow\dfrac{4x\left(t-x\right)+3x\left(t+x\right)}{\left(t+x\right)\left(t-x\right)}=6\)

\(\Leftrightarrow\dfrac{7tx-x^2}{t^2-x^2}=6\)

\(\Leftrightarrow7tx-x^2=6t^2-6x^2\)

\(\Leftrightarrow-6t^2+7xt+5x^2=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)\left(t-\dfrac{5}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\t-\dfrac{5}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2-6x+6-\dfrac{5}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2-6x+\dfrac{13}{3}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{9+\sqrt{42}}{3}\\x=\dfrac{9-\sqrt{42}}{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{-1}{2};\dfrac{9\pm\sqrt{42}}{3}\right\}\)

Bài 1: Giải các phương trình: a)(5x^ 2 -45).( 4x-1 5 - 2x+1 3 )=0 b) (x^ 2 -2x+6).(2x-3)=4x^ 2 -9 d) 3 5x-1 + 2 3-5x = 4 (1-5x).(5x-3) c) (2x + 19)/(5x ^ 2 - 5) - 17/(x ^ 2 - 1) = 3/(1 - x) e) 3/(2x + 1) = 6/(2x + 3) + 8/(4x ^ 2 + 8x + 3) (x^ 2 -3x+2).(x^ 2 -9x+20)=40 (2x + 5)/95 + (2x + 6)/94 + (2x + 7)/93 = (2x + 93)/7 + (2x + 94)/6 + (2x + 95)/5 Bài 2: Giải các phương trình sau: g) a) (x + 2) ^ 2 + |5 - 2x| = x(x + 5) + 5 - 2x b) (x - 1) ^ 2 + |x + 21| - x ^ 2 - 13 =...
Đọc tiếp

Bài 1: Giải các phương trình: a)(5x^ 2 -45).( 4x-1 5 - 2x+1 3 )=0 b) (x^ 2 -2x+6).(2x-3)=4x^ 2 -9 d) 3 5x-1 + 2 3-5x = 4 (1-5x).(5x-3) c) (2x + 19)/(5x ^ 2 - 5) - 17/(x ^ 2 - 1) = 3/(1 - x) e) 3/(2x + 1) = 6/(2x + 3) + 8/(4x ^ 2 + 8x + 3) (x^ 2 -3x+2).(x^ 2 -9x+20)=40 (2x + 5)/95 + (2x + 6)/94 + (2x + 7)/93 = (2x + 93)/7 + (2x + 94)/6 + (2x + 95)/5 Bài 2: Giải các phương trình sau: g) a) (x + 2) ^ 2 + |5 - 2x| = x(x + 5) + 5 - 2x b) (x - 1) ^ 2 + |x + 21| - x ^ 2 - 13 = 0 d) |3x + 2| + |1 - 2x| = 5 - |x| c) |5 - 2x| = |1 - x| Bài 3: Cho biểu thức A = ((x + 2)/(x + 3) - 5/(x ^ 2 + x - 6) + 1/(2 - x)) / ((x ^ 2 - 5x + 4)/(x ^ 2 - 4)) a) Rút gọn A. b) Tim x de A = 3/2 c) Tìm giá trị nguyên c dot u a* d hat e A có giá trị nguyên. B = ((2x)/(2x ^ 2 - 5x + 3) - 5/(2x - 3)) / (3 + 2/(1 - x)) Bài 4: Cho biểu thức a) Rút gọn B. b) Tim* d tilde e B>0 . c) Tim* d hat e B= 1 6-x^ 2 . Bài 5: Cho biểu thức H = (2/(1 + 2x) + (4x ^ 2)/(4x ^ 2 - 1) - 1/(1 - 2x)) / (1/(2x - 1) - 1/(2x + 1)) a) Rút gọn H. b) Tìm giá trị nhỏ nhất của H. c)Tim* d vec e bi vec e u thic H= 3 2

4
8 tháng 3 2022

roois vãi

8 tháng 3 2022

-Đăng tách câu hỏi bạn nhé.

NV
22 tháng 1 2022

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+5x+12}=a>0\\\sqrt{2x^2+3x+2}=b>0\end{matrix}\right.\) \(\Rightarrow x+5=\dfrac{a^2-b^2}{2}\)

Phương trình trở thành:

\(a+b=\dfrac{a^2-b^2}{2}\)

\(\Leftrightarrow\left(a-b-2\right)\left(a+b\right)=0\)

\(\Leftrightarrow a-b-2=0\) (do \(a+b>0\))

\(\Leftrightarrow a=b+2\)

\(\Leftrightarrow\sqrt{2x^2+5x+12}=\sqrt{2x^2+3x+2}+2\)

\(\Leftrightarrow2x^2+5x+12=2x^2+3x+6+4\sqrt{2x^2+3x+2}\)

\(\Leftrightarrow x+3=2\sqrt{2x^2+3x+2}\) (\(x\ge-3\))

\(\Leftrightarrow x^2+6x+9=4\left(2x^2+3x+2\right)\)

\(\Leftrightarrow7x^2+6x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\)

22 tháng 1 2022

cảm ơn Thầy nhiều ạ