Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+z^2-xy-3y-2z+4\ge0\)
\(\Leftrightarrow\)\(4x^2+4y^2+4z^2-4xy-12y-8z+16\ge0\)
\(\Leftrightarrow\)\(\left(4x^2-4xy+y^2\right)+3\left(y^2-4y+4\right)+\left(4z^2-8z+4\right)\ge0\)
\(\Leftrightarrow\)\(\left(2x-y\right)^2+3\left(y-2\right)^2+2\left(z-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}2x-y=0\\y-2=0\\z-1=0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)
x2 + y2 + z2 = xy + 3y + 2z - 4
<=> 4x2 + 4y2 + 4z2 = 4xy + 12y + 8z - 16
<=> (4x2 - 4xy + y2) + (3y2 - 12y + 12) + (4z2 - 8z + 4) = 0
<=> (2x - y)2 + 3(y - 2)2 + (2z - 2)2 = 0
Dấu = xảy ra khi
\(\hept{\begin{cases}2x-y=0\\y-2=0\\2z-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)
a) Để A có nghĩa, mẫu số của biểu thức phải khác 0. Vì vậy, ta cần giải phương trình: x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2 ≠ 0 b) Để tính giá trị của A khi x = -1/2, y = 5/2 và z = 8, ta thay các giá trị này vào biểu thức và tính toán: A = (-1/2)^3(5/2) - (-1/2)(5/2)^3 + (5/2)^3(8) - (5/2)(8)^3 + (8)^3(-1/2) - (8)(-1/2)^2 / (-1/2)^2(5/2) - (-1/2)(5/2)^2 + (5/2)^2(8) - (5/2)(8)^2 + (8)^2(-1/2) - (8)(-1/2)^2 Sau khi tính toán, ta sẽ có giá trị của A. Lưu ý: Để tính toán đúng, hãy chắc chắn rằng bạn đã sử dụng các giá trị x, y, z đúng và thực hiện các phép tính đúng theo thứ tự ưu tiên.
\(x^2+y^2+z^2-xy-3y-2z+4=0\)không có thừ số x à.
(\(\left(x-\frac{y}{2}\right)^2+3\left(\frac{y}{2}-1\right)^2+\left(z-1\right)^2=0\)
y=2